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0.1 Introduction

Practitioners frequently use polygons to model objects in applications where
geometry is important. In polygon decomposition we represent a polygon as
the union of a number of simpler component parts. Polygon decomposition
has many theoretical and practical applications and has received attention
in several previous surveys [26, 68, 107, 128, 133].

Pattern Recognition is one area that uses polygon decomposition as a
tool [41, 110, 111, 112, 133]. Pattern recognition techniques extract in-
formation from an object in order to describe, identify or classify it. An
established strategy for recognising a general polygonal object is to decom-
pose it into simpler components, then identify the components and their
interrelationships and use this information to determine the shape of the
object [41, 111].

Polygon decomposition is also useful in problems arising in VLSI art-
work data processing. Layouts are represented as polygons, and one ap-
proach to preparation for electron-beam lithography is to decompose these
polygon regions into fundamental figures [6, 42, 100, 102]. Polygon de-
composition is also used in the process of dividing the routing region into
channels [82].

In computational geometry, algorithms for problems on general polygons
are often more complex than those for restricted types of polygons such as
convex or star-shaped. The point inclusion problem is one example [114].
For other examples see [4] or [108]. A strategy for solving some of these
types of problems on general polygons i1s to decompose the polygon into
simple component parts, solve the problem on each component using a
specialized algorithm, and then combine the partial solutions.

Other applications of polygon decomposition include data compression
[92], database systems [90], image processing [97], and computer graphics
[131].

Although much work has been done on decomposing polyhedra in three
or higher dimensions [17, 10], we will restrict the scope of this survey to
that of decomposing polygons in the plane.

Triangulation, the partitioning of the interior of a polygon into trian-
gles, is a central problem in computational geometry. Many algorithms for
polygons begin by triangulating the polygon. As early as 1978, Garey et al
[45] provided an O(nlogn) time algorithm, but no matching lower bound
was known. The importance of the problem led to a significant amount of
research [39, 132] on algorithms, culminating in Chazelle’s linear time algo-
rithm [27]. Although it certainly is an example of a polygon decomposition
problem, the triangulation problem has taken on a life of its own and we
will consider a systematic study of the triangulation problem, as well as



related mesh generation work, to be outside the scope of this survey. For a
good survey of mesh generation and optimal triangulation see [17].

There are a wide variety of types of component subpolygons that are
useful for polygon decomposition. These include subpolygons that are con-
vex, star-shaped, spiral or monotone, as well as fixed shapes such as squares,
rectangles and trapezoids. Before proceeding further we provide definitions
for some of the restricted types of polygons. A point # in a polygon P is
visible from a point y in P, if the line segment joining « and y lies entirely
inside P. We treat a polygon as a closed set, thus a visibility line may
touch the boundary of P. A polygon P is convez if every pair of points in
P are visible from each other. A polygon P is star-shaped if there exists
at least one point « inside P from which the entire polygon is visible. The
entire set of points in P from which P is visible is called the kernelof P. A
polygonal chain in a polygon P is a sequence of consecutive vertices of P.
A spiral polygon is a polygon whose boundary chain contains precisely one
concave subchain. A polygonal chain is monotone with respect to a line [
if the projections of the vertices in the chain on [ occur in exactly the same
order as the vertices in the chain. A polygon P is monotone if there exists
a line [ such that the boundary of P can be partitioned into two polygonal
chains which are monotone with respect to the line [. See figure 1.

It is also useful to classify the type of polygon that is being decomposed.
Polygons may be simply connected or they may contain holes. Holes are
nonoverlapping ”island” simple polygons, inside the main polygon. Some
authors allow for degenerate holes such as line segments or points. The
complexity of a decomposition problem usually increases if the polygon
contains holes. A polygon is said to be orthogonal if all of its sides are
either horizontal or vertical. Orthogonal polygons are relevant in many
applications and in this survey special emphasis is placed on the decompo-
sition of orthogonal polygons.

Polygon decompositions are also classified according to how the compo-
nent parts interrelate. A decomposition is called a partition, if the compo-
nent subpolygons do not overlap except at their boundaries. If generally
overlapping pieces are allowed we call the decomposition a cover.

Decomposing a polygon into simpler components can be done with or
without introducing additional vertices which are commonly called Steiner
points. While the use of Steiner points makes subsequent processing of the
decomposed polygon more complex, it also often allows the use of fewer
component parts. See figure 2.

In a polygon with n vertices, at some N of the vertices the interior
angle will be reflex (greater than 180°). The number N of reflex vertices
of a polygon can be much smaller than n and we analyze the complexity of
decomposition algorithms with respect to both n and N. See figure 2.
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In most applications we want a decomposition that is minimal in some
sense. Some applications seek to decompose the polygon into the minimum
number of some type of component. Other applications use a decomposition
that minimizes the total length of the internal edges used to form the de-
composition (minimum ”ink”). Perhaps the earliest minimum ”ink” result
is due to Klincsek [69]. He uses dynamic programming to find the min-
imum ”ink” triangulation of a polygon. His work was influential in that
it inspired subsequent dynamic programming solutions to decomposition
problems. As in the example of figure 6, a minimum edge length decom-
position can be quite different from a minimum number decomposition for
the same component type.

In the next section we will review the work that has been done concern-
ing partitioning and covering general polygons. In section 3 we turn our
attention to orthogonal polygons and consider the work done on decompos-
ing orthogonal polygons.

0.2 Decomposing General Polygons

In this section we consider both partitioning and covering problems for
general polygons.

0.2.1 Polygon Partitioning

When partitioning a polygon into simpler subpolygons, it is the application
which determines the type of subpolygon to be used. Syntactic pattern
recognition uses convex, spiral and star-shaped decompositions [41, 110,
112, 123, 9, 133]. VLSI applications use trapezoids [6]. In the rest of this
section we will consider each of these types of subpolygons in turn.

Convex Subpolygons

When the polygon may contain holes, the problem of partitioning a polygon
into the minimum number of convex components is NP-hard [79], either
allowing or disallowing Steiner points. For polygons without holes much of
the work done disallows Steiner points. A 1975 algorithm, due to Feng and
Pavlidis [41], runs in O(N3n) time, but does not generally yield a minimum
decomposition. Schachter’s 1978 [123] O(nN) time partitioning algorithm
also cannot guarantee a minimum number of components.

For polygons without holes disallowing Steiner points, several approxi-
mation algorithms provide results guaranteed to be close to optimum. In
1982 Chazelle [25] provides an O(nlogn) time algorithm that finds a parti-
tion that contains fewer than 4% times the optimal number of components.



Later, Greene [55], and Hertel and Mehlhorn [61] provide O(nlogn) time
algorithms that find a partition that contains less than or equal to four
times the optimal number of components. Note that, for polygons without
degenerate holes, any convex partition that does not contain unnecessary
edges will be within four times of the optimal sized partition. This is true
as each added edge can eliminate at most two reflex vertices and each reflex
vertex requires at most two edges to eliminate it in any convex partition
that does not contain unnecessary edges.

The year 1983 saw the achievement of algorithms obtaining the optimal
number of convex components. When disallowing Steiner points, Greene
[55] developed an O(N?n?) time algorithm for partitioning a polygon into
the minimum number of convex components. Independently, Keil [64, 65]
developed an O(NZnlogn) time algorithm for the problem. This result
employs a general technique for reducing the size of the state space in a
dynamic programming formulation.

Allowing Steiner points makes the problem quite different. There are
an infinite number of possible locations for Steiner points. Nevertheless,
as early as 1979 Chazelle and Dobkin [24, 28, 29] developed an O(n +
N3) time algorithm for the problem of partitioning a polygon into the
minimum number of convex components. They define an Xj-pattern to
be a particular interconnection of k reflex vertices which removes all the
reflex angles at these vertices and creates no new reflex angles. See figure
3. They achieve their algorithm by further developing this idea and using
a dynamic programming framework.

Dobkin et al [37] show how to extend the existing algorithms for decom-
posing a polygon without holes into convex components to optimally parti-
tion a splinegon into convex components (with or without Steiner points).
A splinegon is a polygon where edges have been replaced by ”well behaved
curves” [37].

Partitioning a polygon with holes into convex components remains hard
under the minimum edge length criterion. With Steiner points Lingas et
al [82] show the problem is NP-hard. Disallowing Steiner points, Keil [64]
shows the problem is NP-complete.

Allowing Steiner points, Levcopoulos and Lingas develop approximation
algorithms for the problem [76]. For polygons without holes; they have an
O(nlogn) time algorithm that yields a solution of size O(plogN), where
p is the length of the perimeter of the polygon. For polygons with holes,
they have an O(nlogn) time algorithm that produces a convex partition
of size O((b+ m)logN), where b is the total length of the boundary of the
polygon and the holes and m is the minimum length of its convex partition.
No optimal algorithms for the problem are known when Steiner points are
allowed.
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For a convex polygon with point holes, without the use of Steiner points,
Plaisted and Hong [113] give a polynomial time algorithm for partitioning
into convex subpolygons, such that the total edge length is within 12 times
the minimum amount required. For this problem Levcopoulos and Krznaric
[75] give a greedy type O(nlogn) time algorithm that yields a solution that
is also within a constant factor of optimal.

The year 1983 also saw the achievement of optimal algorithms under
the minimum edge length criteria. For polygons without holes, disallowing
Steiner points, Keil [64] develops an O(N?n%logn) time dynamic program-
ming algorithm for the problem of partitioning a polygon into convex sub-
polygons while minimizing the total internal edge length. Independently,
Greene noticed that his algorithm for the convex minimum number prob-
lem [55] can be adapted to yield an O(N?n?) time algorithm for the convex
minimum edge length problem.

Spiral Subpolygons

Recall that a spiral polygon is a simple polygon whose boundary chain
contains precisely one concave subchain. Keil [64] shows that the problem
of partitioning a polygon with holes into the minimum number of spiral
components is NP-complete, when Steiner points are disallowed. For poly-
gons without holes, again disallowing Steiner points, Feng and Pavlidis [41]
provide a polynomial time algorithm for the problem that does not gen-
erally yield the minimum number of components. Keil [65] provides an
O(n3logn) time algorithm to partition a polygon without holes, disallow-
ing Steiner points, into the minimum number of spiral components. He
also provides an O(n*logn) time algorithm for the same problem under the
minimum edge length optimality criterion [64]. No results are known con-
cerning partitioning polygons into spiral components if Steiner points are
allowed.

Star-shaped Subpolygons

Steiner points are disallowed in most of the known results concerning star-
shaped partitioning. Again we see the hardness of decomposing a polygon
with holes as Keil [64] shows that the problem of partitioning a polygon
with holes into the minimum number of star-shaped components is NP-
complete. In 1981, for polygons without holes, Avis and Toussaint [9] give
an O(nlogn) time algorithm that partitions a polygon into at most % star-
shaped components. This algorithm does not generally yield a minimum
partition. In 1984 Aggarwal and Chazelle [2] are able to partition a polygon
into § components in O(n) time.



In order to achieve a partition into the minimum number of star-shaped
components, in 1983 Keil employs dynamic programming to develop an
O(n®N?logn) time algorithm [65]. The idea is to extend the solutions for
small subpolygons into solutions for larger subpolygons. In general however,
there can be an exponential number of minimum star-shaped partitions of a
subpolygon. Furthermore, there are situations where no minimum partition
of a subpolygon can be extended into a global minimum partition. The
solution is to introduce pseudo star-shaped polygons. A pseudo star-shaped
subpolygon has the property that there exists a point « in the polygon, but
not in the subpolygon, so that every point in the subpolygon can be seen
from x. The algorithm proceeds by keeping one star or pseudo star-shaped
minimum partition of each of a number of equivalence classes of partitions
at each subpolygon.

Shapira and Rappoport [125] make use of a form of star-shaped partition
in a new method for the computer animation task of shape blending. They
seek a partition into the minimum number of star-shaped components, each
of whose kernels contains a vertex of the polygon. When such a partition
exists, they compute it using a restriction of Keil’s algorithm [64]. Since
such a partition does not always exist, they also provide a heuristic which
allows Steiner points.

For the problem of partitioning a polygon into star-shaped compo-
nents while minimizing the total internal edge length, Keil [64] provides
an O(N?n%logn) time algorithm.

Monotone Subpolygons

Recall that a polygon P is monotone if there exists a line, [, such that
the boundary of P can be partitioned into two polygonal chains, each of
which is monotone with respect to [. For a polygon with holes, disallowing
Steiner points, Keil [64] shows that the problem of partitioning a polygon
into the minimum number of monotone subpolygons is NP-complete. For a
polygon without holes, Keil [64] develops an O(Nn*) time algorithm for the
problem. The algorithm relies on the fact that there are only a polynomial
number of preferred directions with respect to which a subpolygon can be
monotone. If a minimum partition is not important Garey et al [45] can
provide an O(nlogn) time algorithm.

If all of the subpolygons in a partition are monotone with respect to
the same line then the partition is a decomposition into uniformly mono-
tone components. Liu and Ntafos [88] give algorithms for partitioning a
polygon without holes into the minimum number of uniformly monotone
subpolygons. They give an O(nN?3 4+ N?nlogn + N°®) time algorithm that
does not use Steiner points, and an O(N3nlogn + N°) time algorithm that
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does allow Steiner points.

For the problem of partitioning a polygon into monotone components
while minimizing the total internal edge length, Keil [64] gives an O(Nn*)
time algorithm.

Other Subpolygons

The problem of partitioning a polygonal region into the minimum number
of trapezoids, with two horizontal sides, arises in VLSI artwork processing
systems [6]. A triangle with a horizontal side is considered to be a trapezoid
with two horizontal sides one of which is degenerate. See figure 4. In such
systems the layout is stored as a set of polygonal regions which should
be partitioned into fundamental figures since the aperture of a pattern
generator is restricted. Trapezoids have been used as fundamental figures.
Asano et al [6] develop an O(n®) time algorithm, based on circle graphs,
for the problem when the polygon does not contain holes. If a minimum
partition is not important, Chazelle is able to partition a polygon into
trapezoids in O(n) time as a by-product of his linear time triangulation
algorithm [27]. In the case where the polygon does contain holes; Asano et
al [6] show the problem to be NP-complete, and they provide an O(nlogn)
time approximation algorithm that finds a partition containing not more
than three times the number of trapezoids in a minimum partition.

Everett et al [40] consider the problem of partitioning a polygon into
convex quadrilaterals. They use Steiner points, and give an O(n) time
algorithm that is not guaranteed to provide the minimum number of com-
ponents. Another O(n) time algorithm for this problem, that limits the
number of Steiner points, is given in [116]. Tt is not always possible to par-
tition a polygon into convex quadrilaterals without adding Steiner points.
Lubiw [91] shows that the problem of deciding whether or not a partition
without Steiner points is possible is NP-complete. Algorithms for parti-
tioning convex polygons with point holes into quadrilaterals are given in
[134, 18].

Levcopoulos et al [81, 78] provide some algorithms for partitioning some
types of polygons into m-gons under the minimum edge length optimization
criterion.

0.2.2 Polygon Covering

Much of the work done concerning covering general polygons has involved
convex or star-shaped components.



Convex Subpolygons

The problem of covering a polygon with the minimum number of con-
vex subpolygons finds application in syntactic pattern recognition [41, 110,
112, 111, 109]; for example in the recognition of chinese characters. In
1982 O’Rourke was one of the first to investigate the complexity of this
problem. He showed that, although it is difficult to restrict the possi-
ble locations of Steiner points [105], the problem is nevertheless decidable
[104, 103]. For polygons with holes, O’Rourke and Supowit show that the
problem is NP-hard [109], with or without Steiner points, and for this prob-
lem O’Rourke[106] provides an algorithm which runs in exponential time.
Several years later, in sharp contrast to the partitioning situation, Culber-
son and Reckhow show that even if the polygon does not contain holes,
the problem of covering a polygon with the minimum number of convex
components remains NP-hard [35].

The difficulty of the problem motivates the consideration of the problem
of covering a polygon with a fixed number of convex subpolygons. Shermer
[129] provides a linear time algorithm for recognizing polygons that can
be covered with two convex subpolygons. Belleville provides a linear time
algorithm for recognizing polygons that can be covered with three convex
subpolygons [13, 14].

A more general type of polygon decomposition allows set difference as
well as union as an operator to apply to the components. This additional
operator may allow for a smaller number of component pieces. Batchelor
[12] investigates a procedural approach to convex sum/difference decom-
positions. This type of decomposition has been applied to the automatic
transformation of sequential programs for efficient execution on parallel
computers [94]. Also, Tor and Middleditch [131] give an O(n?) time al-
gorithm for finding a convex sum/difference decomposition that may not
necessarily use the minimum number of components.

Star-shaped Subpolygons

The problem of covering a polygon with star-shaped subpolygons has often
been investigated as the problem of guarding an art gallery [9, 107, 128§].
The region visible from a guard is a star-shaped subpolygon and the poly-
gon models the art gallery. Knowledge of this problem helps with the
understanding of visibility problems within polygons.

General satisfactory solutions are not known for the minimum star-
shaped covering problem. In 1983 for polygons with holes, O’Rourke and
Supowit show the problem to be NP-hard [109]. Later Lee and Lin [70] show
the problem remains NP-hard, even without holes, if the kernel of each star-
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shaped subpolygon must contain a vertex. Aggarwal [1] then shows that the
unrestricted problem is NP-hard for polygons without holes. More recently
other variations of the problem are shown to be NP-hard by Hecker and
Herwig [59], and by Nilsson [101].

In 1987 Ghosh [48] develops an O(n®logn) time approximation algo-
rithm, that finds a cover within a factor of O(logn) of optimal, if the kernels
of the subpolygons are restricted to contain vertices. His algorithm works
whether or not the polygon contains holes. In 1988 Aggarwal et al [3] con-
sider a restricted problem, for polygons without holes, where subpolygon
sides must be contained in either edges, edge extensions or segments of lines
passing through two vertices of the polygon. For this restricted problem
they develop an O(n*logn) time approximation algorithm that produces
a cover within a factor of O(logn) of optimal. They also show that the
restricted problem remains NP-hard.

Belleville [15] investigates the problem of recognizing polygons that can
be covered by two star-shaped subpolygons. He gives an O(n?) time algo-
rithm for recognizing such polygons.

Shermer [127] contributes to knowledge of related problems by giving
bounds on the number of generalized star-shaped components required in
a generalized cover.

Other Subpolygons

Spiral polygons and rectangles are two other types of component subpoly-
gons that have been used to cover a polygon. For polygons with holes,
O’Rourke and Supowit [109] show that covering with the minimum num-
ber of spiral subpolygons is NP-hard.

Levcopoulos and Lingas [77] consider covering acute polygons, whose
interior angles are all greater than 90°, by rectangles. They show that for
convex polygons, the minimum number of rectangles needed in a cover is
O(nlog(r(P))), where r(P) is the ratio of the length of the longest edge
of the polygon to the length of the shortest edge of the polygon. Later
Levcopoulos [71, 74] extends this result and gives an algorithm that covers
such an acute polygon with O(nlogn+m(P)) rectangles in time O(nlogn +
m(P)), where m(P) is the number of rectangles in an optimal cover.

0.3 Orthogonal Polygons
In this section we turn our attention to the problem of decomposing or-

thogonal polygons. An orthogonal polygon is a polygon whose edges are
either horizontal or vertical. Orthogonal polygons are also referred to as
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rectilinear polygons. They arise in applications, such as image processing
and VLSI design, where a polygon is stored relative to an implicit grid.
The set of orthogonal polygons is a subset of the set of all polygons, thus
any polynomial time algorithm developed for general polygons will apply
to orthogonal polygons, but problems NP-complete for general polygons
may become tractable when restricted to orthogonal polygons. There are
also natural subpolygons for orthogonal polygons, such as axis aligned rect-
angles or squares that are less relevant to general polygons. In the next
two subsections we treat partitioning and covering problems for orthogonal
polygons.

0.3.1 Partitioning Orthogonal Polygons

Rectangles are the most important type of component to consider in relation
to orthogonal polygons. The problem of partitioning orthogonal polygons
into axis aligned rectangles has many applications.

Image processing is often more efficient when the image in rectangular.
For example, Ferrari et el [42] indicate that the convolving of an image with
a point spread function can be made particularly efficient by specifying the
nonnegative values of the point spread function over a rectangular domain
and specifying that function to be zero outside that domain. They suggest
handling a nonrectangular orthogonal image by partitioning it into the
minimum number of rectangular subregions.

In VLSI design, two variations of the problem arise. The first occurs in
optimal automated VLSI mask fabrication [83, 100, 102]. In mask genera-
tion a figure is usually engraved on a piece of glass using a pattern generator.
A traditional pattern generator has a rectangular opening, thus the figure
must be partitioned into rectangles so that the pattern generator can ex-
pose each such rectangle. The entire figure can be viewed as an orthogonal
polygon. Since the time required for mask generation depends on the num-
ber of rectangles, the problem of partitioning an orthogonal polygon into
the minimum number of rectangles becomes relevant. Another VLSI design
problem is that of dividing the routing region into channels. Lingas et al
[82] suggest that partitioning the orthogonal routing region into rectangles,
while minimizing the total length of the lines used to form the decompo-
sition, will produce large "natural-looking” channels with a minimum of
channel to channel interaction. Thus the minimum ”ink” criteria is also
relevant.

Other application areas for the problem of partitioning orthogonal poly-
gons into the minimum number of rectangles include database systems [90]
and computer graphics [54].

At this point we should note that the use of Steiner points is inherent
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in the solution of the problem of partitioning into rectangles. For example
for an orthogonal polygon with one reflex vertex, a partition can be formed
by adding a horizontal line segment from the reflex vertex to the polygon
boundary. In fact a generalization of this idea forms the basis for most
partitioning algorithms. The following theorem [87, 102, 42] expresses this.
See figure 5.

Theorem 1 An orthogonal polygon can be minimally partitioned into N —
L — H 4+ 1 rectangles, where N s the number of reflex vertices, H 1s the
number of holes and L is the mazimum number of nomintersecting chords
that can be drawn either horizontally or vertically between reflex vertices.

The theorem implies that a key step in the decomposition problem is
that of finding the maximum number of independent vertices in the inter-
section graph of the vertical or horizontal chords between reflex vertices.
This problem can in turn be solved by finding a maximum matching in a
bipartite graph. In 1979 Lipski et al [87] exploited this approach to develop
an O(n%) time algorithm for partitioning orthogonal polygons with holes.
Algorithms for the same problem running within the same time bounds
were also developed in [102] and [42]. In the early 1980s the special struc-
ture of the bipartite graph involved allowed the development of improved
algorithms for the problem running in O(n%logn) time [62, 85, 86]. These
algorithms have been recently extended by Soltan and Gorpinevich [130]
to run in the same time bounds even if the holes degenerate to points. It
is open as to whether or not faster algorithms can be developed. The only
known lower bound for the problem with holes is Q(nlogn) [83].

If the polygons do not contain holes then faster algorithms are possi-
ble. In 1983 Gourley and Green [54] develop an O(n?) time algorithm that
partitions an orthogonal polygon without holes into within 3/2 of the min-
imum number of rectangles. In 1988 Naha and Sahni [100] also develop
an algorithm that partitions into less than 3/2 of the minimum number
of rectangles, but their algorithm runs in O(nlogn) time. Finally in 1989,
Liou et al [83] produce an O(n) time algorithm to optimally partition an
orthogonal polygon without holes into the minimum number of rectangles.
The O(n) time is achieved assuming that the polygon is first triangulated
using Chazelle’s linear time triangulation algorithm.

Note that the three dimensional version of the problem is NP-complete
[36].

Minimizing the total length of the line segments introduced in the par-
titioning process is the other optimization criterion that arises in the ap-
plications. See figure 6. Lingas et al [82] were the first to investigate this
optimization criteria. They present an O(n*) time algorithm for the prob-
lem of partitioning an orthogonal polygon without holes into rectangles
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using the minimum amount of ink. If the polygon contains holes they show
that the problem becomes NP-complete.

In applications holes do occur, thus the search was on for approximation
algorithms for the problem. The first algorithm of this type was given by
Lingas [80] . In 1983 he presented an O(n*) time algorithm to partition an
orthogonal polygon with holes into rectangles such that the amount of ”ink”
used is within a constant of the minimum amount possible. Unfortunately,
the constant for this algorithm is large (41). In 1986 Levcopoulos [73]
was able to reduce the constant to five while also producing an algorithm
running in only O(n?) time. In the same year [72] he further reduced the
time to O(nlogn), but at the expense of a large increase in the size of the
constant.

The restriction of the problem to where the orthogonal polygon becomes
a rectangle and the holes become points is also NP-complete [82]. Gonza-
lez and Zheng [51] show how to adapt any approximation algorithm for the
restricted problem to yield an approximation algorithm for the more gen-
eral problem where the boundary polygon need not be a rectangle. Their
method is to use the algorithm given in [82] to partition the boundary or-
thogonal polygon into rectangles, then each of these rectangles along with
the point holes inside it, becomes an instance of the restricted version of
the problem.

In 1985 Gonzalez and Zheng [51] give an approximation algorithm, run-
ning in O(n?) time that partitions a rectangle with point holes into disjoint
rectangles, using no more than 3 ++/3 times the minimum amount of ”ink”
required. The next year Levcopoulos [72] improves the time to O(nlogn),
while maintaining the same bound. Later Gonzalez and Zheng [53] give an
algorithm that runs in O(n?) time, that produces a solution within 3 times
optimal. They use a so called ”guillotine” partition to develop an approx-
imation algorithm within 1.75 times optimal [52], but which uses O(n®)
time. See figure 7. A recent paper [49] provides a simpler proof that the
”guillotine” partition is within 2 times optimal. If time is more important,
Gonzalez et al [50] give an algorithm that runs in O(nlogn) time, but only
finds a solution guaranteed to be within four times optimal.

If Steiner points are disallowed, then quadrilaterals rather than rect-
angles become the natural component type for the decomposition of or-
thogonal polygons. Kahn, Klawe and Kleitman [63] show that it is always
possible to partition an orthogonal polygon into convex quadrilaterals. This
is not always possible for arbitrary polygons. This partitioning of a poly-
gon into convex quadrilaterals is referred to as quadrilateralization. Sack
and Toussaint develop an O(nlogn) time algorithm for quadrilateralizing
an orthogonal polygon [119, 121]. They use a two step process. First the
orthogonal polygon is partitioned into a specific type of monotone poly-
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gon, these are in turn partitioned into quadrilaterals in linear time [120].
Lubiw [91] also provides an O(nlogn) time quadrilateralization algorithm
for orthogonal polygons. Arbitrary monotone or star-shaped orthogonal
polygons can be quadrilateralized in linear time [121].

Let us now turn to the problem of finding the minimum edge length
quadrilateralization of an orthogonal polygon. For this problem Keil and
Sack [68] give an O(n?) time algorithm. Later Conn and O’Rourke [32]
improve this to O(n3logn) time.

There are other known results concerning orthogonal partitioning. Liu
and Ntafos [89] show how to partition a monotone orthogonal polygon into
star-shaped components. Their algorithm runs in O(nlogn) time, allows
Steiner points, and yields a decomposition within four times optimal. Gun-
ther [56] gives a polynomial time algorithm for partitioning an orthogonal
polygon into orthogonal polygons with k& or fewer vertices. In most cases
this algorithm finds a partition that is within a factor of two of optimal.
Gyori et al [58] also have some results on partitioning orthogonal polygons
into subpolygons with a fixed number of vertices.

0.3.2 Covering Orthogonal Polygons

Tools from graph theory are useful when developing algorithms for covering
orthogonal polygons. If each edge of an orthogonal polygon is extended to a
line, a rectangular grid results. Based on this grid, a graph can be associated
with a covering problem as follows. The vertices of the graph are the grid
squares that lie within the polygon and two such vertices are adjacent if
the associated grid squares can be covered by a subpolygon lying entirely
within the polygon. Depending upon the type of subpolygon, there can be
a correspondence between covering the graph with the minimum number of
cliques and the original polygon covering problem. For example in figure 8,
if the grid squares are joined by edges if they lie in the same rectangle, then
the problem of covering the polygon with rectangles corresponds to covering
the derived graph with cliques. If such a correspondence exists, then the
tractability of both problems depends upon the properties of the derived
graph. This graph theory approach underlies several of the algorithms we
shall encounter in this section. The types of subpolygons that have been
studied include rectangles, squares, orthogonally convex, orthogonally star-
shaped and others.

Rectangles

The problem of covering an orthogonal polygon with the minimum number
of axis aligned rectangles has found application in data compression [90], the
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storing of graphic images [95], and the manufacture of integrated circuits
[23, 60].

As early as 1979 Masek [95] showed that if the orthogonal polygon
contains holes, then the problem 1s NP-complete. Later Conn and O’Rourke
[31] show that for an orthogonal polygon with holes it is also NP-complete if
only the boundary or only the reflex vertices need to be covered. Attention
then turned to the case where the polygon does not contain holes.

In 1981 Chaiken et al [23] initiated the above mentioned graph theory
approach. They define a graph GG with grid squares for vertices and with two
vertices adjacent if there 1s a rectangle, lying entirely within the polygon,
that contains both associated grid squares. They show that the cliques of
this graph correspond to the rectangles in the polygon whose sides lie on
grid lines. The rectangle cover problem then corresponds to the problem
of covering the vertices of the graph with the minimum number of cliques.
This clique problem is NP-complete in general but polynomially solvable
for the class of perfect graphs. Unfortunately, the graph derived from the
rectangle problem is not perfect, even if the polygon does not contain holes
[23].

In the search for a solvable restriction of the problem attention turned
to restricted types of orthogonal polygons. An orthogonal polygon is called
horizontally (vertically) conver if its intersection with every horizontal (ver-
tical) line is either empty or a single line segment. For an example see figure
9. An orthogonal polygon is called orthogonally convez if it is both hori-
zontally and vertically convex. Chaiken et al [23] have an example showing
that even for orthogonally convex polygons the derived graph is not per-
fect. Thus for the rectangle covering problem the graph approach has not
yielded efficient algorithms. Note that the intersection graph of the maxi-
mal rectangles in an orthogonal polygon without holes is perfect [126].

To develop a polynomial time algorithm for the special case of covering
an orthogonally convex polygon with the minimum number of rectangles,
in 1981 Chaiken et al [23] use an approach that reduces the problem to
the same problem on a smaller polygon. Later Liou et al [84] develop an
O(n) time algorithm for this problem. Brandstadt also contributes a linear
algorithm for the restricted case of 2-staircase polygons [19].

In 1984 Franzblau and Kleitman [43] handle the larger class of horizon-
tally convex polygons. They give a polynomial time algorithm for covering
this class with the minimum number of rectangles. See also [57].

In 1985 Lubiw [92] was able to provide a polynomial time algorithm
for another restricted class of orthogonal polygons. Her algorithm han-
dles orthogonal polygons that do not contain a rectangle that touches the
boundary of the polygon only at two opposite corners of the rectangle.

In spite of these efforts on special cases the general problem of cov-
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ering an orthogonal polygon without holes with the minimum number of
rectangles remained open for some time. Finally in 1988, Culberson and
Reckhow [35] settle the issue by showing the problem to be NP-complete.
Later Berman and Das Gupta [16] go further and show that no polynomial
time approximation scheme for the problem exists unless P = NP.

The difficulty of the problem led Cheng et al [30], in 1984, to develop a
linear approximation algorithm that is guaranteed to find a solution within
four times optimal for hole free polygons. Then in 1989 Franzblau develops
an O(nlogn) time approximation algorithm that yields a covering contain-
ing O(flogl) rectangles, where ¢ is the minimum number of rectangles
required for a covering [44]. She also shows that an optimal partitioning
contains at most 260 + H — 1 rectangles, where H is the number of holes
contained in the polygon.

Recently, Keil [67] introduces a type of rectangle decomposition which is
intermediate between partitioning and covering. This non-piercing covering
allows rectangles to overlap, but if two rectangles A and B overlap, then
either A— B or B— A must be connected. Keil provides an O(nlogn + mn)
time algorithm for finding an optimal non-piercing covering of an orthogonal
polygon P without holes, where m is the number of edges in the visibility
graph of P that are either horizontal, vertical or form the diagonal of an
empty rectangle.

Squares

Covering polygons with axis aligned squares has application in the con-
struction of data structures used in the storage and processing of digital
images. For example, the digital medial axis transform (MAT) [135] is
based on representing an image by the union of squares. Simple images
may be covered by few squares and may be easily reconstructed from the
MAT.

Scott and Tyengar [124] define the Translation Invariant Data Structure
(TID), as a method for representing images. An image is considered to be a
grid of ”black” and ”white” pixels, and the TID for a given image consists
of a list of maximal squares covering all black regions within the image. In
order to reduce the cost of storing and manipulating a TID, the underlying
list of squares should be as small as possible. Scott and Tyengar [124] give
a heuristic for finding a small covering set of squares as part of their TID
construction algorithm.

Albertson and O’Keefe [5] investigate a graph associated with the square
covering problem. A unit square in the plane whose corners are integer
lattice points is called a block. A polygon with integer vertices then contains
of set of N blocks. Albertson and O’Keefe define a graph, with the blocks
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as vertices and with such vertices adjacent if the corresponding blocks can
be covered by a square lying entirely within the polygon. They show that
for polygons without holes this graph is perfect. They further show that the
blocks corresponding to a clique in the graph form a set of blocks entirely
contained within a single square lying in the polygon. Aupperle et al [8]
investigate this graph further and show that for polygons without holes the
graph is chordal. This allows the use of an algorithm for covering chordal
graphs by cliques to serve as an O(N?%) time algorithm for the problem of
covering an orthogonal polygon without holes with the minimum number
of squares. By further exploiting the geometry, Aupperle [7] adapts this
approach to produce an O(N1-%) time algorithm for this problem. The
fastest algorithm based on the blocks lying in the polygon runs in O(N)
time and is due to Moitra [96, 97].

The number N of blocks lying in the polygon could be much larger that
n, the number of vertices defining the polygon. Even if the block side is
optimized N may be Q(n?). In light of this Bar-Yeuda and Ben-Chanoch
[11] consider an alternative approach of covering the polygon one square at
a time and achieve an O(n + @) time algorithm for covering an orthogonal
polygon without holes, where & is the minimum number of squares required
in a cover.

If the polygon contains holes the square coverage problem becomes NP-
complete [8, 7].

Orthogonal Convex and Star-shaped subpolygons

When restricting the polygons to be orthogonal we find it is natural to
also restrict the notion of visibility. We consider two notions of orthogonal
visibility [33]. Two points of a polygon are said to be r-visible if there
exists a rectangle that contains the two points [66]. Using r-visibility leads
to the fact that an r-convex polygon is just a rectangle. The decomposition
of an orthogonal polygon into rectangles has been discussed in previous
subsections. An r-star-shaped polygon, P, is an orthogonal polygon for
which there exists a point ¢ of P such that for all other points p of P p is
r-visible (ie. lies in the same rectangle) to q.

Recall that an orthogonally convex polygon is an orthogonal polygon
that is both horizontally and vertically convex. Two points of an orthog-
onal polygon are said to be s-visible (staircase visible) if there exists an
orthogonally convex subpolygon containing both points. Note that an s-
convex polygon is simply an orthogonally convex polygon. An s-starshaped
polygon contains a point ¢, such that for every point p, in the polygon,
there 1s an orthogonally convex subpolygon containing both p and q.

In this subsection we will consider the problems of covering an orthogo-
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nal polygon with the minimum number of r-stars, s-stars and orthogonally
convex polygons.

A classification of orthogonal polygons, due to Reckhow and Culberson
[118], based on the types of ”dents” encountered, has been useful in the
work on these problems [34, 33, 99, 98, 115, 117, 118]. If the boundary
of the orthogonal polygon is traversed in the clockwise direction, at each
corner either a right 90° (outside corner) or a left 90° (inside corner) turn
is made. A dentis an edge of P both of whose endpoints are inside corners.
If the polygon is aligned so that north (N) corresponds with the positive
y axis, then dents can be classified according to compass directions. For
example, an N dent is traversed from west to east in a clockwise traversal
of the polygon. An orthogonal polygon can then be classified according to
the number and the types of dents it contains. A class k orthogonal poly-
gon contains dents of k different orientations. Class 0 orthogonal polygons
are the orthogonally convex polygons. A vertically or horizontally convex
polygon (class 2a) is a class 2 orthogonal polygon which has only opposing
pairs of dent types (ie N and S or E and W). Class 2b orthogonal polygons
have two dent orientations that are orthogonal to one another (ie. W and
N, N and E, E and S, or S and W). For an example of a class 3 polygon see
figure 10.

The graph theory approach has been important in the development of
understanding of these problems. By extending the dent edges across the
polygon a partition into O(n?) basic regions results. These basic regions
correspond to vertices in the definition of several relevant graphs. Motwani
et al [99, 98] define an s-convex visibility graph, using the basic regions as
vertices, where two vertices are adjacent in the graph if the corresponding
basic regions can be covered by a single orthogonally convex subpolygon.
They define an r-star (s-star) visibility graph, again using the basic regions
as vertices, where two vertices u and v are adjacent if there is a region w
that is r-visible (s-visible) to the regions corresponding to v and v. Related
directed graphs were defined by Culberson and Reckhow [118, 33, 117, 34].

In 1986 Keil [66] provides the first algorithm for minimally covering
with orthogonally convex components. He provides an O(n?) time algo-
rithm for covering horizontally convex orthogonal polygons. In 1987, for
this problem, Reckhow and Culberson [118, 34] give an Q(n?) lower bound
on actually listing the vertices of all the subpolygons in the output, but
provide an O(n) time algorithm for finding the minimum number of or-
thogonally convex polygons in an optimal cover of a horizontally convex
orthogonal polygon. Culberson and Reckhow also provide an O(n?) algo-
rithm for minimally covering class 2b type orthogonal polygons, and they
give a complex algorithm for handling a larger class. Later for class 3
polygons Reckhow [117] provides an O(n?) time algorithm.
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For the problem of covering with orthogonally convex components the
relevant convex visibility graph is formed by connecting two grid squares if
they can be covered by a single orthogonally convex subpolygon [98, 115,
117, 118]. Motwani et al [98] prove that a minimum clique cover of this
visibility graph corresponds exactly to a minimum cover of the correspond-
ing orthogonal polygon by orthogonal convex polygons. Thus we may solve
the polygon covering problem using existing graph clique cover algorithms.
The complexity of the available clique cover algorithms depends upon the
properties of the convex visibility graph. For class 2 polygons, the convex
visibility graph is a permutation graph [98, 115]. For class 3 polygons, the
graph turns out to be weakly triangulated [98, 117]. Although these graph
classes allow polynomial time clique cover algorithms, the known geometric
algorithms are still the most efficient algorithms to solve the problem of
covering an orthogonal polygon with the minimum number of orthogonally
convex subpolygons. For class 4 polygons (general orthogonal polygons)
the convex visibility graph is not perfect [98, 115] and the complexity of
the general problem of covering orthogonal polygons with the minimum
number of orthogonally convex subpolygons remains open.

For covering with r-stars, Keil [66] provides an O(n?) time algorithm
for optimally covering a horizontally convex orthogonal polygon. This is
later improved to O(n) time in [46]. For general class 2 polygons, class 3
polygons and general orthogonal polygons the problem of covering with the
minimum number of r-stars remains open.

For covering with s-stars, Culberson and Reckhow [33] provide O(n?)
time algorithms for optimally covering horizontally convex orthogonal poly-
gons and general class 2 polygons. For class 3 and class 4 polygons the
development of algorithms has depended upon properties of the s-star visi-
bility graph. Motwani et al [99] show that for class 3 polygons the derived
s-star visibility graph is chordal. They show that a minimum clique cover
algorithm for chordal graphs can be used to s-star cover class 3 polygons in
O(n?) time. For class 4 polygons they show that the derived s-star graph
is weakly triangulated. This then leads to an O(n®) time algorithm for the
general s-star covering problem [99].

Other covering subpolygons

There are some other known results related to the covering of orthogonal
polygons with subpolygons. Bremner and Shermer [20, 21] studied an ex-
tension of orthogonal visibility, called O-visibility, in which two points of
the polygon are (O-visible if there is a path between them whose intersection
with every line in the set O of orientations is either empty of connected. For
orthogonal visibility @ = {0°,90°}. A polygon P is O-convex if every two
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points of P are O-visible, and O-star-shaped if there is a point of P from
which every other point of P is O-visible. Bremner and Shermer [20, 21]
were able to characterize classes of orientations for which minimum covers
of a (not necessarily orthogonal) polygon by O-convex or O-star-shaped
components could be found in polynomial time.

Regular star-shaped (nonorthogonal) polygons have also been studied
as covering subpolygons. Edelsbrunner et al [38] give an O(nlogn) time
algorithm that covers an orthogonal polygon with | %] 41 star-shaped sub-
polygons, where r is the number of reflex vertices in the polygon. This is
improved by Sack and Toussaint [122] who give an O(n) time algorithm for
covering an orthogonal polygon with | % | star-shaped components. Carlsson
et al [22] are able to produce an optimal star-shaped cover for histograms
in linear time.

Gewali and Ntafos [47] consider covering with a variation of r-stars
where periscope vision is allowed. They give an O(n®) algorithm for opti-
mally covering a restricted type of orthogonal polygon. A different variation
of r-stars is considered by Maire [93]. His stars consist of a union of a ver-
tical and a horizontal rectangle and look like ”plus” signs. He defines a
type of star graph and shows it is weakly triangulated implying an optimal
algorithm for the covering problem.
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Figure 0.1: (a) a star-shaped polygon, (b) a spiral polygon, and (c¢) a
polygon monotone with respect to the y-axis

(b)
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Figure 0.2: A polygon with 9 vertices and 3 reflex vertices partitioned into
convex subpolygons (a) with a Steiner point and (b) without Steiner points

(@

(b)
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Figure 0.3: An X- pattern
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Figure 0.4: A partition into trapezoids
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Figure 0.5: Horizontal and vertical chords between reflex vertices
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Figure 0.6: A partition using (a) the minimum number of rectangles, and
(b) the minimum amount of ”ink”

(@

(b)
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Figure 0.7: A guillotine partition
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Figure 0.8: Each grid region can be associated with the vertex of a graph
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Figure 0.9: A horizontally convex polygon
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Figure 0.10: A class 3 polygon containing N, W and S dents
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