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Abstract

In this paper we consider the problem of decomposing a simple polygon into subpolygons
that exclusively use vertices of the given polygon. We allow two types of subpolygons: pseudo-
triangles and convex polygons. We call the resulting decomposition PT-convex. We are
interested in minimum decompositions, i.e., in decomposing the input polygon into the least
number of subpolygons. Allowing subpolygons of one of two types has the potential to reduce
the complexity of the resulting decomposition considerably.

The problem of decomposing a simple polygon into the least number of convex polygons
has been considered. We extend a dynamic-programming algorithm of Keil and Snoeyink for
that problem to the case that both convex polygons and pseudo-triangles are allowed. Our
algorithm determines such a decomposition in O(n3) time and space, where n is the number
of the vertices of the polygon.

1 Introduction

The problem of decomposing the convex hull of a set of points into subpolygons has a long history.
We are interested in decompositions where the vertices of the subpolygons are restricted to the set
of input points. Triangulations are an example of such decompositions. Every triangulation of a
set of n points consists of 2n − 2 − c triangles where c is the number of points on the convex hull.
Thus one is usually interested in triangulations that optimize some additional parameter. For
example, the Delaunay triangulation is known to maximize the smallest angle over all triangles
in the triangulation. Another famous example is the minimum-weight triangulation. It minimizes
the sum over the lengths of all edges in the triangulation. The complexity of computing this
triangulation was open for a long time, until Mulzer and Rote [MR06] very recently managed to
show that the problem is NP-hard. Krznaric and Levcopoulos [KL98] have shown that there is a
constant-factor approximation for the problem, but the factor of their approximation is so large
that they have not explicitly calculated it.

The concept of triangulations has been generalized by considering decompositions that consist
of other, more complex and thus potentially fewer subpolygons. Two natural generalizations of
triangles are (a) convex polygons and (b) pseudo-triangles. Pseudo-triangles are simple polygons
with exactly three convex angles, i.e., interior angles of less than 180◦. They have applications in
visibility complexes [PV96], ray shooting [CEG+94, GT97], rigidity theory and robot arm motion
planning [Str00], guarding polygons [ST05], and kinetic collision detection [KSS02].

Concerning the first generalization of triangles, Fevens et al. [FMR01] have investigated min-
imum convex decompositions, i.e., decompositions that consist of the least number of convex
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subpolygons. Their algorithm takes O(n3h+3) time, where h is the number of nested convex hulls
of the given point set. Spillner [Spi05] has given a fixed-parameter algorithm for the problem, the
number of points in the interior of the convex hull being the parameter. For the case that points
are in general position, Knauer and Spillner [KS06] have given a simple 3-approximation that runs
in O(n log n) time and a more involved 30/11-approximation that runs in O(n2) time.

Concerning the second generalization of triangles, Streinu [Str00] has shown strong links be-
tween minimally rigid graphs and minimum pseudo-triangulations. In particular, she proved that
the minimum number of edges needed to obtain a pseudo-triangulation is 2n − 3 and thus, by
Euler’s polyhedron theorem, the number of pseudo-triangles in a minimum pseudo-triangulations
is n − 2, which does not depend on the structure of the point set (given general position) but
only on its size. There has also been work on enumerating all minimum pseudo-triangulations
[ARSS03, Ber05]. Gudmundsson and Levcopoulos [GL07] investigate the problem of computing
minimum-weight pseudo-triangulations for sets of points, where the weight of a decomposition is
the sum over the lengths of all edges in the decomposition. They approximate the problem in
two ways. Given a set of n points, their first algorithm computes a pseudo-triangulation whose
weight is at most O(log n) times larger than that of a minimum spanning tree of the same point
set. In contrast, they show there are point sets where every convex decompositions (and thus
every triangulation) has weight Ω(n) times that of a minimum spanning tree. Their second algo-
rithm computes in cubic time a pseudo-triangulation whose weight is at most 15 times that of a
minimum-weight pseudo-triangulation.

Aichholzer et al. [AHK+06] were the first to investigate decompositions where each subpolygon
has the choice to be convex or a pseudo-triangle, i.e., one of the two generalizations of triangles
mentioned above. We call such decompositions PT-convex. They show that each minimum PT-
convex decomposition of a set of n points consists of less than 7n/10 polygons. In contrast,
there are point sets where any minimum convex decomposition consists of at least 12n/11 − 2
subpolygons [GN06]. (On the other hand, Knauer and Spillner [KS06] showed that every point
set can be decomposed into no more than 15n/11− 24/11 convex polygons.)

A related problem is the decomposition of simple polygons into convex polygons or pseudo-
triangles, e.g., for point location or ray shooting. When decomposing a simple polygon we also
say that the decomposition is convex, a pseudo-triangulation or PT-convex if the decomposition
uses exclusively the corresponding types of polygons. Again we are interested in minimum de-
compositions. Keil [Kei85] has given a general technique for decomposing a simple polygon into
polygons of a certain type. The technique is based on optimally decomposing subpolygons each
of which is obtained from the original by drawing a single diagonal. Keil’s technique yields an
O(nr2 log r)-time algorithm for the convex decomposition problem, where r is the number of reflex
vertices of the polygon, i.e., vertices whose inner angle is larger than 180◦. Keil also showed that
the convex decomposition problem becomes NP-hard if the input polygons can have holes. Keil
and Snoeyink [KS02] improve Keil’s algorithm by giving a O(n + min(nr2, r4))-time and -space
solution. Interestingly, the problem can be solved faster, namely in O(n+ r3) time, when allowing
Steiner points [CD85].

In the above-mentioned paper [GL07], Gudmundsson and Levcopoulos also give a cubic-time al-
gorithm for computing a minimum-weight pseudo-triangulation of a simple polygon. They use this
algorithm as a sub-routine for their 15-approximation of the minimum-weight pseudo-triangulation
of a set of points.

In this paper we give an algorithm for computing a minimum PT-convex decomposition of a
simple polygons. Our dynamic-programming algorithm is based on two main ingredients: Keil’s
general decomposition technique [Kei85] and the way how Gudmundsson and Levcopoulos [GL07]
determine all geodesics in the given polygon which form chains of reflex vertices and can thus
potentially be sides of pseudo-triangles. Our algorithm takes O(n3) time and space.

Our paper is structured as follows. We first briefly describe the approach of Keil [Kei85] and
Keil and Snoeyink [KS02] in Section 2. Then we characterize pseudo-triangles in terms of chains
of reflex vertices and vice versa, see Section 3. We present our algorithm in Section 4 and analyze
its running time in Section 5. Finally, we give some open problems in Section 6.
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Fig. 1: The geodesic B1B2 . . . Bm from Ai to Aj is concave with respect to the simple polygon P .

2 Previous Work

Keil [Kei85] introduces a general technique for decomposing a simple polygon into polygons of
a certain type. The technique is based on optimally decomposing subpolygons each of which is
obtained from the original by drawing a single diagonal d. In each decomposition D of a subpolygon
there is a unique polygon P (D) that contains the diagonal.

Keil defines a relation D1 ≤ D2 between two minimum decompositions of a subpolygon if and
only if the angles at d in the polygon P (D1) are not greater than the corresponding angles in
P (D2) respectively. He argues that it suffices to consider decompositions that are minimal under
this relation in order to find a minimum decomposition of P . Keil considers the equivalence classes
which these minimal elements determine. Their representatives can be easily computed and can
be used to check whether a given minimum decomposition can be extended without increasing the
number of polygons. This idea yields an O(n3 log n)-time algorithm for the convex decomposition
problem. Keil and Snoeyink [KS02] observe that (a) once a representative cannot be used to extend
a decomposition it can be discarded and that (b) only diagonals incident on at least one reflex
vertex need to be considered. This results in an O(nr2)-time algorithm, where r is the number of
reflex vertices of the polygon. Observation (a) helps us to obtain an O(n3)-time algorithm for our
problem.

3 Characterization of Pseudo-Triangles

We use P+(Ai, Aj) and P−(Ai, Aj) to denote the paths on the boundary ∂P from a vertex Ai

to a vertex Aj of P in clockwise and counter-clockwise direction, respectively. To simplify the
notation we will always assume that the edge AnA1 does not lie in the part of the polygon that
we currently investigate; for three vertices Ai, Aj , and Ak, this means that we can write i < j < k
if we mean that vertex Aj lies on the path P+(Ai, Ak) (see Lemma 1, for an example).

We say that a point Q ∈ P is visible from a point Q′ ∈ P if the relative interior of the line
segment QQ′ is contained in the interior of P or if Q and Q′ are adjacent vertices of P ; note
that the relative interior of a line segment is the set of all the points of the segment except for
the endpoints. With vis(Ai) we denote the list of all vertices of P that are visible from Ai in
clockwise order starting with Ai+1. Unless stated otherwise, we number the vertices of a polygon
in clockwise order.

Definition 1 Let P = A1A2 . . . An be a simple polygon. A path Π = B1B2 . . . Bm from Ai = B1

to Aj = Bm is a concave geodesic with respect to the polygon P if Π satisfies the following three
conditions, see Figure 1:

(G1) for each k < m it holds that Bk+1 is the last vertex on P+(Bk, Aj) which is visible from Bk,
and

(G2) B1B2 . . . Bm is a convex, counter-clockwise oriented polygon.
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Fig. 2: Three consecutive concave
geodesics π1, π2, and π3 de-
fine a pseudo-triangle.()
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Fig. 3: Sketch for the proof of Lemma 1; arcs represent the
boundary of the polygon P+(Ai, Aj), solid straight-line
segments are the edges of π1 = T+(Ai, Aj).

Remark 1 If B1B2 . . . Bm is a concave geodesic from B1 to Bm with respect to a simple polygon P
and m ≥ 3, then B2 . . . Bm is a concave geodesic from B2 to Bm with respect to P . On the other
hand, given two vertices Ai and Aj of a simple polygon P , there is at most one concave geodesic
that connects Ai and Aj . Thus there are O(n2) concave geodesics in a simple polygon with n
vertices.

For our further considerations we need the following observation.

Observation 1 ([KS02]) Let Ai be a vertex of P = A1A2 . . . An. Consider the line segments
AiAj with Aj ∈ vis(Ai). Their cyclic order around Ai is the same as the order of their other
endpoints along ∂P .

We now state the relationship between pseudo-triangles and concave geodesics in a simple
polygon.

Lemma 1 Let P = A1A2 . . . An be a simple polygon and let T ⊆ P be a pseudo-triangle whose
vertices are vertices of P and whose convex vertices are Ai, Aj and Ak with i < j < k. Then the
paths π1 = T +(Ai, Aj), π2 = T +(Aj , Ak), and π3 = T +(Ak, Ai) are concave geodesics with respect
to P .

Proof. First note that the vertices of π1 lie on P+(Ai, Aj), those of π2 lie on P+(Aj , Ak), and
those of π3 lie on P+(Ak, Ai) otherwise T would not be simple. To avoid double indices, let
B1B2 . . . Bm = π1, C1C2 . . . , Cm′ = π2, and D1D2 . . . , Dm′′ = π3, see Figure 2. We now check the
three properties of concave geodesics for π1. Again, to simplify the notation, we assume that π1

does not contain the edge AnA1. The proofs for π2 and π3 are symmetric.
Now we establish property (G1). We consider the path π1 and show that the construction pro-

posed in property (G1) does not fail. Assume to the contrary that there is an index r ∈ {i, . . . , j−1}
such that Ar violates the construction proposed in property (G1). See Figure 3. Let As be the ver-
tex on π1 immediately following Ar. Then it is clear that s > r. Now let t ∈ {s+1, . . . , j} be such
that At is visible from Ar. Due to Observation 1 we know that the edges ArAr+1, ArAs and ArAt

appear in clockwise order around Ar. In particular, because of the convexity of T +(Ar, Aj)Ar,
the edge ArAt intersects T +(Ar, Aj) only in Ar and the edge ArAs is contained in the polygon
P+(Ar, At)Ar. However, Aj lies outside this polygon and thus T +(Ar, Aj) leaves P+(Ar, At)Ar

in some point x which does not belong to ArAt, see Figure 3. Hence T +(Ar, Aj) leaves P . This
contradicts the fact that T is contained in P . Thus the assumption that property (G1) fails at
some point is wrong. This shows that π1 actually does satisfy property (G1).

Finally we show that property (G2), i.e., convexity, holds for the polygon B = B1B2 . . . Bm′ .
Consider the ray that emanates from Ai and goes through B2. Note that the line segment AiB2 lies
in P since T is contained in P . Due to Observation 1 we know that if we turn the ray in clockwise
direction, it will hit Dm′′−1. During this movement the part of the ray in a small neighborhood of
Ai will remain in P . Denote by r the ray in an arbitrary position during this movement. Define
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an analogous ray r′ emanating from Aj . Since the chain π1 has reflex angles at B2, . . . , Bm−1 in
the interior of T (which correspond to convex angles in the interior of B), the chain cannot leave
the triangle ∆ formed by the line segment AiAj and the two rays r and r′. Since ∆ has convex
angles in Ai = B1 and Aj = Bm′ , this also holds for B. Thus all angles in B are convex, and so
is B. �

Next we establish the converse relation: three concave geodesics determine a pseudo-triangle.

Lemma 2 Let P = A1A2 . . . An be a simple polygon. Further let i < j < k and π1 = Ai . . . Aj ,
π2 = Aj . . . Ak and π3 = Ak . . . Ai be concave geodesics with respect to P . Then π1π2π3 is a
pseudo-triangle.

Proof. To avoid double indices let π1 = Ai . . . Aj = B1B2 . . . Bm and π2 = Aj . . . Ak =
C1C2 . . . Cm′ , see Figure 2. We first consider the geodesics π1 and π2 and show that they are
disjoint except for the vertex Aj where π1 meets π2 in a convex angle.

Rotate a ray counter-clockwise around Aj starting at Ai. Due to property (G2) in Definition 1
the ray sweeps over the vertices Ai = B1, . . . , Bm−1 of π1 in this order. Due to Observation 1 the
ray then hits all vertices of P−(Ai, Ak) visible from Aj . Due to property (G1) the next vertex
hit by the ray is C2. Again due to (G2) the ray then hits the vertices C3, . . . , Cm′ = Ak of π2 in
this order. This shows that π1 and π2 do not intersect and that the angle ∠Bm−1AjC2 is convex.
Symmetric arguments show that analogous statements hold for the other two pairs (π2, π3) and
(π3, π1) of geodesics. Due to property (G2) all vertices of π1π2π3 other than Ai, Aj , and Ak are
reflex. Thus π1π2π3 is a simple polygon with exactly three convex vertices, i.e., a pseudo-triangle.
�

4 Algorithm

We use the same approach for finding a minimum PT-convex decomposition of a simple polygon
as Keil and Snoeyink [KS02] use for finding the minimum convex decomposition of a polygon,
i.e., we consider subpolygons which are obtained from the original polygon by drawing a single
diagonal. As Keil and Snoeyink we use dynamic programming, treating subpolygons in order of
increasing number of vertices. For each subpolygon P ′ of the given polygon P we consider the
diagonal d that separates P ′ from P . We compute two decompositions of P ′, namely one that is
minimum under the constraint that d bounds a convex face of P ′ and one that is minimum given
that d bounds a pseudo-triangle in P ′.

We compute the smallest decomposition of the first type analogously to Keil and Snoeyink.
For the second type of decomposition where the diagonal d bounds a pseudo-triangle we proceed
as follows. Assume we have a precomputed list L of all concave geodesics with respect to P . Then
we can filter L to find all pseudo-triangles that contain the diagonal d as an edge. For each such
pseudo-triangle T we compute the size of a minimum decomposition that contains T . Among all
these decompositions we keep the smallest.

Now we describe our algorithm in detail. Let P = A1A2 . . . An be a simple polygon. We
use definitions similar to those of Keil and Snoeyink. If i < j and Aj is visible from Ai in P
then we denote the line segment AiAj by dij and call it a diagonal of P . Note that by our
definition of visibility, each edge of P is a diagonal. Each diagonal defines a (simple) subpolygon
Pij = AiAi+1 . . . Aj contained in P . If the diagonal is an edge of P , the subpolygon is empty.

Definition 2 Let Dij denote the set of all PT-convex decompositions of a polygon Pij and let

wij = min{|D| : D ∈ Dij},
cwij = min{|D| : D ∈ Dij and the diagonal dij is an edge of a convex polygon of D },
pwij = min{|D| : D ∈ Dij and the diagonal dij is an edge of a pseudo-triangle of D }.

Since the polygons Pi,i+1 (i = 1, . . . , n) are degenerate we set wi,i+1 = cwi,i+1 = pwi,i+1 = 0.
Note also that wij = min(cwij , pwij).
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(a) dij bounds a pseudo-triangle

Ai1

P \ Pij
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(b) dij bounds the triangle AiAi1Aj

Ai1

Ai Aj

P \ Pij

dij

Π

(c) dij bounds a convex polygon
Π ∪ AiAi1Aj

Fig. 4: Three types of minimum PT-convex decompositions of Pij .

4.1 Computation of pwij

We describe how to find pwij given the values wkl for each pair (k, l) with (l − k) mod n < (j −
i) mod n and a list L of all concave geodesics for the polygon P . We consider all concave geodesics
which contain the edge AiAj and lie completely in Pij . For each such geodesic π1 = B1B2 . . . Bm

we go along P−(B1, Bm) and for each vertex Al ∈ P−(B1, Bm) we check whether there exist
concave geodesics π2 = Bm . . . Al and π3 = Al . . . B1. If π2 and π3 exist, then π1π2π3 is a pseudo-
triangle according to Lemma 2, see Figure 4a. A minimum decomposition of Pij containing this
pseudo-triangle can be obtained if and only if for each pair (k, l) 6= (i, j) such that AkAl is an edge
of π1π2π3 the polygon Pkl is optimally decomposed.

Thus if w(π) denotes the sum of all wkl where AkAl lies on a geodesic π, then it is clear that
the minimum decomposition of Pij using the pseudo-triangle π1π2π3 consists of

s(π1, Al) = 1 + w(π2) + w(π3) +
∑

AkAl∈π1\{AiAj}

wkl

polygons. Now pwij is the minimum of s(π1, Al) over all pairs (π1, Al) that fulfill the above
requirements.

4.2 Computation of cwij

In this section we describe how to compute cwij if we have the values cwkl and wkl whenever
(l − k) mod n < (j − i) mod n. Our approach is based on the algorithm of Keil and Snoeyink
[KS02] for computing a minimum convex decomposition of a simple polygon. We start with the
following definition.

Definition 3 A PT-convex decomposition D of Pij is called diagonal-convex if the diagonal dij

is an edge of a convex polygon AiAi1 . . . Aim
Aj in D, where m > 1.

Given a diagonal-convex decompositionD of Pij that contains a convex polygon AiAi1 . . . Aim
Aj

it is clear that the triangle AiAi1Aj is contained in P . Moreover, if m > 1, then Ai1Ai2 . . . Aj

is also a (non-degenerate) convex polygon and thus D induces a diagonal-convex decomposition
of Pi1j .

Now let us change the point of view. Consider a triangle AiAi1Aj with i < i1 < j that is
contained in P . Then decomposing Pii1 and Pi1j optimally and adding the triangle AiAi1Aj

yields a diagonal-convex decomposition of Pij , see Figure 4b. This decomposition D⋆ consists of

wii1 + wi1j + 1
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Fig. 5: The pair of indices (s, t) is a representative of Pi1j , while (s′, t′), (s, s), and (t, t) are not.

polygons. Now the question is whether we can do better. Can we extend the triangle AiAi1Aj into
a larger convex polygon AiAi1Ai2 . . . Aj? This is possible if and only if there is a diagonal-convex
decomposition D′ of Pi1j containing a convex polygon Π = Ai1Ai2 . . . Aim

Aj with the additional
property that

∠Ai2Ai1Ai < 180◦ and ∠AiAjAim
< 180◦. (1)

Then we can merge the triangle AiAi1Aj with Π. This yields a diagonal-convex decomposition
of Pij consisting of wii1 + |D′| polygons. Note that if D′ is not minimum, we have wii1 + |D′| ≥
wii1 + cwi1j + 1 ≥ wii1 + wi1j + 1 = |D⋆|, see Figure 4c. Since we consider D⋆, we can ignore
non-minimum decompositions D′. (Observe that there is no need to check whether the triangle
AiAi1Aj can be extended by a convex polygon AiAk . . . Ai1 that is adjacent to edge AiAi1 ; such
a decomposition will be considered when we process the triangle AiAkAj .)

It only remains to show how to test condition (1) efficiently. We do this similarly to Keil and
Snoeyink [KS02]. First observe that in order to check condition (1) one only needs access to vertices
Ai2 and Aim

rather than to the whole polygon Π. Next consider two minimum diagonal-convex
decompositions D and D′ of Pi1j with D 6= D′. Let Π = Ai1As . . . AtAj and Π′ = Ai1As′ . . . At′Aj

be the corresponding convex polygons which contain the edge Ai1Aj . Suppose that s′ ≤ s ≤ t ≤ t′.
Then according to Observation 1, we have that

∠AiAi1As ≤ ∠AiAi1As′ and ∠AiAjAt ≤ ∠AiAjAt′ .

Hence either D′ violates condition (1), or if D′ satisfies it, then D also satisfies it. For an
example, see Figure 5. In either case we can ignore D′ without risking to lose the optimum
solution. This is the motivation for defining a pair (s, t) of vertex indices with i < s ≤ t < j to be
a representative for a polygon Pij if the following three conditions hold.

(R1) The polygon Pij has a minimum diagonal-convex decomposition that contains a convex
polygon of the form AiAs . . . AtAj .

(R2) For each other pair (s′, t′) satisfying condition (R1) it holds that s′ ≤ s or t ≤ t′.

We again refer to the example in Figure 5. Condition (R2) yields the following observation.

Observation 2 For each value of s ∈ S = {i + 1, . . . , j − 1} the subpolygon Pij has at most one
representative (s, ts). Thus Pij has at most |S| ∈ O(n) representatives.

Given the representatives of all Plj with i < l < j we can compute cwij as

cwij = min
{

min
i<l<j:

AiAlAj⊂P

(wil + wlj + 1), min
l

(wil + cwlj)
}

where the last minimum is over all i < l < j such that AiAlAj ⊂ P and additionally Plj possesses
a representative satisfying condition (1). The information about the representatives of all Pi1j

with i < i1 < j suffices to determine the representatives of Pij . As Keil and Snoeyink [KS02] we
maintain a list of representatives for each Pij sorted with respect to the first component which
allows us to compute all values of type cwij in amortized O(n) time per pair (i, j).
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5 Analysis

We now investigate the time and space complexity of our algorithm. In order to compute the values
of type pwij we need access to all concave geodesics. The following slight modification of Theorem 2
in [GL07] yields a data structure that lets us compute and efficiently access the concave geodesics
in a simple polygon. In order to motivate property (P3), observe that Amin(π) and Amax(π) are
adjacent on a concave geodesic π if and only if π lies in the subpolygon Pmin(π)max(π) and contains
the diagonal dmin(π)max(π).

Proposition 1 Given a simple polygon P = A1A2 . . . An we can construct in O(n2) time and
space a data structure DS with the following properties:

(P1) Given a pair (i, j), DS decides in O(1) time whether there is a concave geodesic π from Ai

to Aj.

(P2) If π is a concave geodesic, DS provides the minimum index min(π) = {l | Al ∈ π} and the
analogously defined maximum index max(π) of π in O(1) time.

(P3) If π is a concave geodesic, DS decides in O(1) time whether Amin(π) and Amax(π) are adjacent
on π.

(P4) If π is a concave geodesic of length l, DS provides in O(l) time a walk along π.

Proof. We first compute all lists vis(Ai) in O(n2) total time. Then we use dynamic programming
to check whether there is a concave geodesic π from Ai to Aj . If π exists, we also compute the
second and the second last vertex on π. Having these vertices on each shorter geodesic, we can walk
along π by repeatedly jumping to the second vertex of the remaining path, which by Remark 1 is
also a geodesic.

We consider the pairs (i, j) in increasing order of the number of vertices on the path P+(Ai, Aj).
The edges AiAi+1 obviously correspond to concave geodesics and it is easy to determine the second
and second last vertex of these paths.

When P+(Ai, Aj) consists of more than one edge, we use the list vis(Ai) to find the last vertex
Al visible from Ai on P+(Ai, Aj). Observation 1 allows us to extract the desired information from
vis(Ai) in O(1) amortized time. Then we query DS to see whether there is a concave geodesic
π from Al to Aj . (We can query DS with (l, j) since (l − j) mod n < (i − j) mod n.) If this is
the case, we use the second and the second last vertex on π to check whether Ai can be added to
π without violating property (G1). According to Remark 1 this is the only way for obtaining a
concave geodesic π′ from Ai to Aj . If Aj is visible from Ai, we can easily set min(π′) and max(π′),
and determine the second and the second last vertex on π′. Moreover Amin(π′) and Amax(π′) are
adjacent in this case.

Consider the more interesting case that Aj is not visible from Ai. Then the second vertex
on π′ is Al and the second last vertex on π′ is the second last vertex on π. It is also clear that
min(π′) = min(i, min(π)) and max(π′) = max(i, max(π)). If min(π′) 6= i and max(π′) 6= i, then
Amin(π′) and Amax(π′) are adjacent on π′ if and only if Amin(π) and Amax(π) are adjacent on π, a
piece of information that we have already computed. Otherwise, say if i = min(π′), then Amin(π′)

and Amax(π′) are adjacent on π′ if and only if max(π′) = l. Thus the information we earlier
computed for π yields the desired information for π′ in O(1) time. It follows that we spend O(1)
(amortized) time and O(1) space per pair (i, j), and O(n2) time and space in total. �

Now we are ready to prove our main theorem.

Theorem 1 A minimum PT-convex decomposition of a simple polygon P = A1A2 . . . An can be
computed in O(n3) time and space.

Proof. Our algorithm for computing a minimum PT-convex decomposition is based on dynamic
programming. We first detail how to compute the number of polygons in a minimum PT-convex
decomposition rather than the decomposition itself.
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We first set up the data structure DS of Proposition 1. Then for each subpolygon Pij we
compute a list Lij consisting of all concave geodesics that are contained in Pij and contain the
diagonal dij as an edge. Recall that this is exactly the set of concave geodesics π with min(π) = i
and max(π) = j. We store π = Ah, . . . , Ai, Aj , . . . , Ak simply as the pair (h, k) in Lij . Note
that each concave geodesic is contained in at most one list Lij . We generate the lists of type Lij

as follows. We consider all pairs (i, j) in order of increasing value of j − i and query DS to see
whether there is a concave geodesic π from Ai to Aj . We then use DS to determine whether
Amin(π) and Amax(π) are adjacent on π. If yes, we insert the information provided by DS for the
concave geodesic π in the list Lmin(π)max(π). Since all the queries to DS so far require constant
time each, the construction of the lists Lij takes O(n2) time in total.

Then we implement the algorithm of Section 4. Using the technique of Keil and Snoeyink
[KS02], we can compute all values of type cwij in O(n3) time in total. It remains to bound the
time needed for computing the values of type pwij . We check each concave geodesic π in Lij .
(Recall that the lists of type Lij are pairwise disjoint.) We walk along π to determine the sum
of the values wkl over all (k, l) 6= (i, j) with AkAl ⊆ π. For each point Al on P+(Bm, B1) we
check whether there is a concave geodesic π1 from Al to B1 and a concave geodesic π2 from Bm

to Al. If this is the case, then ππ1π2 is a pseudo-triangle according to Lemma 2. In order to
compute a minimum decomposition containing ππ1π2, we need the values w(π1) and w(π2), which
can be computed by walking along π1 and π2 the first time we need these values. In total, we
walk along each geodesic a constant number of times. By Proposition 1, each walk takes O(n)
time. According to Remark 1, the total number of concave geodesics is O(n2). This implies that
we can determine all values of type pwij in O(n3) time.

Thus the number of polygons in a minimum PT-convex decomposition of a simple polygon P
with n vertices can be computed in O(n3) time. The algorithm Keil and Snoeyink [KS02] requires
O(n3) space, while the data structure DS as well as the lists of type Lij use O(n2) space.

Finally we show how to adjust the above dynamic program so that it also yields a minimum
pseudo-convex decomposition. Whenever in that program we compute a value of type pwij or
cwij , we do some additional bookkeeping. From this extra information we can then backtrack and
compute the decomposition that corresponds to the result of the dynamic program. This is a usual
trick in dynamic programming. In the backtracking phase, we initially set i = 1 and j = n, and
then repeatedly check whether wij = pwij or wij = cwij . The following two paragraphs describe
what we do in the first and in the second case, respectively.

Recall that when computing pij , we determine the pseudo-triangle T that (a) lies in Pij , (b) is
adjacent to dij , and (c) yields the minimum decomposition of Pij among all pseudo-triangles
fulfilling (a) and (b). Now the above-mentioned extra bookkeeping consists of storing the indices
of the three convex corners of T . When backtracking we draw the edges of T (with the help of
DS) and further decompose the subpolygons that constitute Pij \ T .

When computing cwij , we store a copy of the list of representatives of Pij . Note that this list
has been built completely by the time that cwij is computed. Take any representative (s, t) and
draw the corresponding diagonals dis and dtj . We consider two cases. If s = t, we simply have
to find minimum pseudo-convex decompositions of Pis and of Psj , see Figure 6a. Otherwise, if
s 6= t, we decompose Pis into wis polygons without any restrictions and decompose Psj into cwsj

polygons including a convex polygon As . . . AtAj , see Figure 6b. When decomposing Psj we must
respect the diagonal dtj . This is where we need the list of all representatives: by construction Psj

must have a representative (s′, t), and we can recursively decompose Ps′j .
Let us analyze time and space consumption of the modified dynamic program. The total time

we spend for the backtracking part is the number of diagonals we draw plus the time we spend
scanning the representative lists. The diagonals (including the edges of P ) are the edges of a plane
graph with n vertices, thus their number is linear in n. Due to Observation 2 and Remark 1 the
total number of representatives is O(n3). Storing (and scanning) these dominates the time and
the space consumption of the modified dynamic program. �
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Ai Aj

As

Pis

P \ Pij

dij

Psj

(a) when s = t

Ai Aj

As
At

Pis

P \ Pij

dij

Psj
As′

dsj

Ps′j

(b) when s 6= t

Fig. 6: Constructing a minimum decomposition of Pij .

6 Open Problems

We have given an efficient and relatively simple dynamic program for computing minimum PT-
convex decompositions of simple polygons. Can the running time of O(n3) be improved, e.g., by
making it not only depend on the number n of vertices, but also on, say, the number r of reflex
vertices?

Can minimum PT-convex decompositions for point sets be computed efficiently? Is there a way
to get at least a constant-factor approximation for that problem by decomposing the convex hull of
the point set into simple polygons and then using our algorithm to further decompose the simple
polygons? Note that grouping the subpolygons of a minimum decompositions arbitrarily into
simple polygons and decomposing these simple polygons one after the other with our algorithm
will yield a minimum decomposition, possibly different from the original. This shows that there
are always decompositions of the point set into simple polygons that yield minimum PT-convex
decompositions. The problem is just to guess a “right” decomposition. Note that Gudmundsson
and Levcopoulos [GL07] use a similar strategy in their 15-approximation of the minimum-weight
pseudo-triangulation.

Finally we ask whether PT-convex decompositions with other optimality criteria can be com-
puted efficiently, e.g., minimum total edge weight. It seems that the method of representatives
[KS02] will fail here since it is tailored towards minimizing the number of subpolygons.

One of the anonymous referees of this paper suggested to allow Steiner points to get even
smaller PT-convex decompositions. This is an interesting variant of the problem. Recall that
the algorithm of Chazelle and Dobkin [CD85] that computes minimum convex decompositions
with Steiner points is even faster than the fastest known algorithm for the corresponding problem
without Steiner points [KS02].
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Tóth. Decompositions, partitions, and coverings with convex polygons and pseudo-
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editors, Proc. 8th Workshop on Algorithms and Data Structures (WADS’03), volume
2748 of Lecture Notes Comput. Sci., pages 377–388. Springer-Verlag, 2003. 2

[Ber05] Sergey Bereg. Enumerating pseudo-triangulations in the plane. Comput. Geom. Theory
Appl., 30(3):207–222, 2005. 2

[CD85] Bernard Chazelle and David P. Dobkin. Optimal convex decompositions. In G. T.
Toussaint, editor, Computational Geometry, pages 63–133. North Holland, Amsterdam,
1985. 2, 10

[CEG+94] Bernard Chazelle, Herbert Edelsbrunner, Michelangelo Grigni, Leonidas J. Guibas,
John Hershberger, Micha Sharir, and Jack Snoeyink. Ray shooting in polygons using
geodesic triangulations. Algorithmica, 12(1):54–68, 1994. 1

[FMR01] Thomas Fevens, Henk Meijer, and David Rappaport. Minimum convex partition of a
constrained point set. Discrete Applied Mathematics, 109(1–2):95–107, 2001. 1

[GL07] Joachim Gudmundsson and Christos Levcopoulos. Minimum weight pseudo-
triangulations. Comput. Geom. Theory Appl., 38(3):139–153, 2007. 2, 8, 10
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