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Abstract:

63

Th.e problem of dccomposing a non-convex simple polygon into a minimum number of

convex polygons is solved. The decomposition allows for tbe introduction of Steiner points.

Two algoritllIIls are proposed. Tne first verifies t.bat tbe problem is doable in polynomirtl time.

TnI.' second provides an efficient method. Along the way, numerous results of indepe-ndent

inte-rest in pure geometry as well as geometric complexity are stated.

1. Introduction

The problem of decomposing a simple polygon into its ba.sic components has been a 1"ccu1"-

rcnt theme in computational geometry. Interest in this problem comes from its central lo'C" at iOIl

in the study of object r~presentation. In the same way that English words benefit "greatly"
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The purpose of this paper is to present the mam ideas of the algorithms in [5] and [3].

We recognize that the interest of our results is primarily theoretical, so we will devote most of

our effort to proving that the OCD problem is polynomial. The rest of the paper will outline

To

study of

describe
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Variants of the OeD problem were considered in [12,13], where the requirement wag made

that no new vertices should be introduced in the partition of P. In [15,16] the objective fWlction

to minimize was no longer the nUluber of pieces but the total edglc'-length. For other work,

consult [1,3,4,8,0,14,18]. Following the original paper of Chazelle and Dobkin [5], the OeD

problem was thoroughly treated in the former author's PhD thesis [3], where an 0(11.+ c3 ) time

decomposition algorithm wa3 preslc'nted (n. is the nnmber of vertices of P and c i3 the number

of reflex angles). This result represents a quantitative (but not qualitative) improvement over

the O(n6
) time algorithm of [5]. Of course it CaIl be argued that for sma.lI values of c, the

algorithm in [3] is linear or quasi-linear. Unfortunately this statement must be tempered by

the rather intricate nature of the algorithm, which makes it an unlikely candidate for efficicnt

implement ation.

from their expressibility ill a 26-letter alphabet, complex geometric structures a.re !IIore t'3sily

handled when oecomposed into simpler structures. Think of tool designers pressed for simple,

modular desiVls. for insta.nce. Another good exa.mple is the recognition of Chinese characters

by matching text data against building blocks, as described in [8]. This operation involves the

deC"ompm;ition of polygonal shapes into convex pieces. For further motivation OIl decomposition

problems. see [8.9,18,20]. The problem we C"OIlsider is:

Given a simp}" polygon P, what is the minimum number of convex polygons which form

a partition of r ?

This i;; called the oeD problem (for "optimal convex dccompo;;ition"). We will briefly

review the known results. The first bre~through on the oeD problem appeared in the pro­

ceedings of the 1979 STOC Symp. [5]. There, these authors proved that the problem was poly­

nomial, thereby frustrating widesprlc'ad suspicion that it was NP-hard. luterestingly €uough,

tlli;; finding was followed by a stream of NP-harrlness result~ for similar problems [12-17]. Fa I'

example, it was shown by Liugas that the presence of holes in the polygon P was sufficient to

make the OeD problem NP-hard [14].
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the mm;t interesting points of the O{n + c3
) time algorithm, referring to [3] for details and

complementary information. The paper will be organized as follows: in this section, we g"lVe a

brief overview of our method. In the next section, we present the basic geometric facts for the

study of the oeD problem. In Section 3, we consider the algorithmic aspect of the problem a.nd

describe the polynomial algorithm for the oeD problem. In the following section, we address

implementation issues <wd outline uew lines of attack to speed up the algorithm. Finally we

give conclusions and outline directions for further research in Section 5.

OUE' methodological note is ill order. Given the intrica.cy of our O(n+ c3 ) algorithm for the

oeD problem, the presentation will follow a top-dowIl approach. We present the main ideas

of the method first, and then fill in the blanks left. Our rationale is to separate the C"ssential

components of the algorithm and the partOl which only contribute to its efficiency.

Two simple facts bOUIld all algorithms for this problem. First, each llotl'h (i.e. vertex

displaying a reflex angle) can be removed by the a.ddition of a polygon to the decomposition.

Second, at moet two notches can be removed through the a.ddition of a single polygon. Hence,

the minimum number of convex parts always lies between rc/21 + 1 a.nd c + 1. To extend

these simple observations, however, is a difficult ma.thema.tical problem. To form minimal

decompositions additional (Steiner) points must be introduced as vertices of newly generated

polygons. This removes the obvious finiteness of the problem and makes simple enumerative

procedures impossible. Furthermore the problem cannot be treated in a local malluer. These

observations led to the conjectnre that the problem was NP-hard.

To circumvent these difficulties, we iutroduce X-patteru.s, from which minimal dccompo-

sitious can be generated. An Xl:-patteru. IS a particular interconnection of k notches which

removes all reflex angles at the k notches and creates no uew notches. A decomposition ob-

tained by applying .v patterns of type Xi. , ... ,X;p along with straight-line segments to remove

the remaining notches can be shown to yield c + 1 - P convex parts. Clearly, decompositions

with the most X-patterns also minimize the number of convex polygons. This can be viewed as

a generalized matching problem which might lend itself to a dynamic programming approach.

Simple examination shows that there is exactly one type of eaeh X,,-pattem for k = 2,3. Were
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Figure
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The naive decomposition and an improvement.
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from ab to ar:.

2. The Geometric Ingredients
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this the case for larger .4:, a polynomial-time algorithm ba.sed upon X-patterns wuuld be pos-

sible. Unfort.unately, detf'rmining whether a given set of notches can be interconnected via an

X-pattcr.u a.ppears too involved to handle directly.

We define the naive decompoJition of P as the set of polygons obtained by removing ea.ch

One solutioIl is to constrain X-patter.us in such a way that their detection becomes tractable.

the intersection of any two if non-empty consists totally of edges and vertices. A decomposition

the efficiency of the original algorithm.

sOlIle structural property. We show that with the exception of X 4-patterns any X-pattern can

L (ab, ac) denotes the angle between 0 and 360 degrees swept by a cOUllterclockwise rotation

be adva.ntageously replaced by a Y -pattern. Since Y -patterns can be constrncted in polynomial

time via dynamic programming, we can achieve our first goal, which is to show that the oeD

This leads to the introduction of Y-patterns, which we can regard as X-patterns endowed with

problem is in P. As is shown later on, further geometric analysis leads to substantial ga.ins in

A decomposit-ion of P is a set of polygons, Pi, ... ,Pk, whose union gives P, and such that

In this o;ec-tioll, we introduce our notation and show tha.t the oeD problem can be re-

Hex angle, called notchel:!, win playa crucial role in the following. Let VI,.'" Vel be the list

duced to a form of generalized matching problem. Let P be a simple polygon with n vertices,

of notches in P, given in clockwise order. Throughout this paper, we will usc the followiIlg

convention on the representation of angles. Let a6 and ac be two nOll-collinear line segments.

Pl, ... ,Pn, in clockwise order. As previously mentioned, the vertices of P which display a re-

is said to be convex if all its polygons are convex. We deHne an optimlll convex dccompoaition

notch ill turn by means of a simple line segment naively drawn from the ll.otch. To be more

of P, or OeD for short, as any convex decomposition of minimum cardinality.

precise, a naive decomposition of P is obta.ined by going through each notch Vi, ... ,Vc in turn,

extending a line segment from Vi until we first hit another line already in the decomposition.I
~'

.~'

j

--......

I
J
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j
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c)

a,b,c) Satisfying degree requirements for
X-decompositions.

d) Removing interior polygons.

Figure 2

a)
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Of course. the extended liIle should remove the reHex a.ngle at lJi. Note tha.t in this way we

will also gnarantee tha.t all lines drawn always lie entirely inside P. To simplify the ensumg

;malysis, we will ensure that the degree of each vertex in the decomposition does not exceed 3

and that no segment ill the naive decompositioIl connects two notches. Tht'se conditions are

trivially always satisfiable. Figure 1 illustrates the notion of naive decomposition and shows in

pal'tieular thilt it is Hot always minimal. We havc the following (trivial) rt'slllt.

1
Lemma 1. Any naive decomposition of P produces t'xactly c + 1 convex parts.

Nf'xt we wish to characterize a convenient class of dt'compositions to which we will restrict

our attention in the following. We say that a polygon is interior to P if it lies inside P and at

most a finite number of itt; pointt; lie on the boundary of P.

Definition 1. An X-decompo3ition is any convex decomposition containing no interior polygons

and such that no vertex is of degree greater than 3, exc~pt for the notches, which may be of

degree at most 4.

Lemma 2. The dass of X-decornpo:sitiollS always contains an OCD.

Proof: Consider an OCD which is not an X-decomposition. We transform its edges to yield an

X-decomposition. First, we show how to satisfy the degree requirements. Since this process

may introduce interior polygons, we show how to remove interior polygons without increasing

the degree of any vertex.

1. We regard the decomposition as a planar graph consisting of bounda.ry edges and added

edge<~ (an edge is said to be added if it does not lie on the boundar! of P). Let ::e be a notch

of degree greater than -4 and Yl, ... , 11m. (m > 4) be itg adjacent vertices, with !11, 1/2 E

boundary of P. It is trivial to show that there exists i > 2 such that L (XYi+l' XYi- d < 180
c \

(Fig.2-a). We can then move X!li along XYi-l or XYi+l to form a new segment ::e'Yi with x'

chosen close cnough to x so as to preserve convexity_ We iterate on this process until the

notch x becomes of degree 4. The other cases to consider are depicted in Fig.2-b,c. In caBe

h) the vertex x is not a notch but still lies on the bOUIldar'l of P (it mayor may not be a
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Figure 3

B. Chazelle and D.P. Dobkin

j

\'\J-, I
'L..-I !

An X-decomposition involving an X3- and an X4-pattern.
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:ern.

2.

vertex of Pl. In case c) x is a vertex of degree> 3 which does not lie on fl1e bounda.ry of

P. The same method used in case a) will reduce the degrees accordingly.

Considcr the subgrayh H formed by the added edges of the oeD under co:m~ideration.

Pick an interior polygon of the oeD and let G be the cOll1lectecJ. component in H to which

the edges of this polygon belong (Fig.2-d). Let al, ... , ak denote the vertices of G (in

clockwise order) OIl the boundarj of l' a:ud let K be the gra.ph obtained by removing G

from the graph of the oeD. Since G lies in P and is a connected component of H, it lies

entirely in one fa.ce of K, denoted Q. We observe that all the ai'S lie on the boundary

of Q. Since G is connected, it determines at least k faces in K, aside from the interior

polygon(s). This shows that the oeD bas at least k + 1 faces in Q. The polygon Q may

liot be {'onvex, hnt gince we had a convex decomposition of P before removing G, all the

notcheg of Q must be notches of P, i.e. must be some of the ai's. Now, instead of keeping

the convex decomposition of Q induced by the OCD, we apply the naive decomposition to

it. This will yield at most k + 1 polygons (exactly Ie + 1, actually, since we are cJ.ealing with

au oeD, and conseqnently no transformation can improve the decomposition). Since the

boundary of each of the created polygons contains at least one of the points ai as a vertex,

and each R.i belongs to at IIlost two polygons, none of these polygons can be interior to

P. Furthermore it follows from the definition of the naive decomposition that the desired

degree constra.ints will be preserved. Iterating on this process for each of the remaining

interior polygons completes the proof. I

We arc now ready to introduce the important notion of X-pattern. Once again we regard

:~

the added edges of an X-decomposition as forming a subgraph of the total decompogition. From

the definition of X-decompositions, it follows tha.t the subgraph is a forest of trees with each

node having degree 1 or 3 except for the notches which may have degree 1 or 2. We will pa.y

special attention to those trecs whcre all vertices of degree 1 or 2 are notches of P.

Definition 2. A planar embedding of a tree lying inside P i3 called an X-pattern if it is not

self-intersecting and;

-1IIII!lI!III!!1I!IiI!iIJIIIlI"'''' ~
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3. None of the 3 allgle~ arOlllld any vertex of degree 3 is reflex.

2.

y.,ith

1. no
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analysis

by flrst

adjacent.

corresponds

will be to

(1)S=k-t+l

Proof: Lf't S, t, k be respectively the llumber of polygons, trees, and tree-vertices lying on the

boundary of P. We prove the relation

L AI] vertices are of degree 1, 2 or 3.

2. Any vertex of degree! or 2 coincides with a notch of P, and its (1 or 2) adjacent edges

remove its reflex angle.

An X-pattern with lr. vertices of degree 1 or 2 is called an Xk-pattern. Vertices of de~ree

1,2.3 are called NI, N2, N3-nodes, respectively. For simplicity we refer to the vertices of degree

1 or 2 c\s the notches of the X-pattern. Informally, an Xk-pattern is an interconnection of k

notches used to remove them while introducing k -1 additional polYKons into the decomposition.

Figure 3 gives au example of an X-decomposition with one X 3 -pattern and one X 4 -pattern.

We justify the introduction of X-pntterns with the following observation.

by induction Oil t. The case t = 1 is trivial, 80 we may assume that the introduction of t - 1

trees involves k 1 vertices Oll the boundary of P and creates 8 1 = k 1 - (t - 1) + 1 pOlygOilS.

Introducing the last tree into the dccompm;itioll will accoUllt for exactly k - k 1 - 1 additional

polygons, leading to a total of S = 8 1 + k ~ k 1 - 1 = Ie - t + 1 polygons and proving (1).

Each of the t - P trees which are not X-pc.tterns has at least one distinct vertex which lies on

the bound<lry of P and is not a notch. This implies that t - p ~ k - e, which alongside (1)

establishes the lemma. I

Lernll18 3 . .An X-decomposition with p X-patterns has at least c + 1 - p convex parts.

Lemma 3 suggests that using p X-patterns saves at most p polygons over the llaivc decom­

position. This lea.ds to the definition of compatible X-patterns. A set of X-patterns is said to

be compatible, if no pair of edges taken from two distinct patterns intersect. For example, the

X-patterns in any X-decomposition always form a compa.tible set. Conversely, we can show

that any set of compatible X-patterns can be used to produce a decomposition. The following

result is complementary to Lemma 3.
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eut edges

of degree

of degree

:tiOil of k

Ipositioll.

,-pattern.

~ts.

:lg on the

(1)

J. of t - 1

polygons.

,dditional

lying (1).

ch lies on

Igside (1)

'e decom-

is said to

mple, the

can show

following

Lemma 4. Any compatible ::1i.'t of p X-patterns can be used to produce an X-decomposition

with exactly c + 1 - p convex parts.

Proof: Start the decomposition with the p X-patterns. This will produce a certain number of

polygons. If any of them is not convex, apply the naive decomposition to it. Straig'htforward

analysis shows that the final number of polygons will be exactly c + 1 - p. II

From Lemmas 2, 3 and 4, we are able to express the orj~inal OeD problem as a ~encra.lized

matchiIlg problem.

Lemma 5. Let p be the maximum number of compatible X-patterns. An oeD can be obtained

by nn;t applying the p X-patterns and then applying the naive decomposition to any remaining

non-convex polygon.

Since any X-pattern has at least two notches, the previous result shows that an OeD

consists of at least 1 + rc/21 polygons. Lemma 5 sugg{'sts a new line of attack for the problem

at hand -the sufficiency of computing a maximum set of compatible X-patterns. Unfortunately

to do so seems beyond reach, given the excessive number of caIldidates we might have to cOIlsider

in the procegs. X-patterns allow Steiner points (i.e. vertices not on the boundary of P) to be

adjacent. Looking at any X-pattern as a mechauical system of extendible arms and joints, this

corresponds to a system which is not strongly constra.ined. We show next that X-patterns can

be in general redu~ed to maxima.lly constrained X-patterns, called Y -patterns. The next step

will be to prove that Y -pattems (being maximally constrained) {: an be computed in polynomial

time. A rigorous definition of these notions is now ill order.

Definition 3. it Yk-pattern is an X,,-pattern such that

1. no edge joins two nodes of type N3.

2. in any path containing three consecutive nodes of respective type N2,N3,N2, the N2-11odes

lie OIl opposite sides, i.e. the two pairs of edges of P which emanate from the N2-nodes lie

on opposite side of the path.
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b) a Y7-pattern and its representation.
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We will use a special representation for NI, N2 and N3-nodes (Fig.4-a). Note that the

N3 nodes of a Y -pattern are its Steiner points. A Y7-pattern and its representation are given

in FigA-b. To help visualize Condition 2, absenT that if the two N2-nodes were pointing

downward, we would not ha.ve a Y -pattern.

We next show that all Xl;-patterns (k t= 4) can be transformed into Y -patterns. This allows

us to limit attention to X-decompositions with only Y and X 4 -patterns. The transformations,

called reduction.'!, involve the stretching, shrinking, and rotating of lines in the original pattern.

Reductions involve sequences of steps with each step translating an N3-node from Olle point to

another. All edges in the pattern except for the three edges adjacent to the N3-node remain

fixed. Reductions stop before an angle in the pattern becomes reflex or an edge in the pa.ttern

strictly intersects an edge on the boundary of P. During a reduction, a tree remains an X-

pattern. It may however gain or lose vertices in the process. For example, Figure 5 shows the

reduction of an X 3 -pattcrn, which might correspDnd to one step in the reduction of a more

complex X-pattern.

In Figure 5, we see how an X,,-pattern may be reduced to an Xl-pattern (l < k). The final

tree is still an X 3 -pattern.; it can also be viewed as an X:rpattem augmented with a segment

provided by the naive decomposition. The X 3 -pattern loses a notch thereby being reduced to

an X2-pattern. This is legitimate since from lemma 5 we know that numbers (rather than

types) of compatible X-patterns matter. In Fig.5, Dbserve that the notches a and b cannot

possibly be interconnected by fL.'1 X 2 -pattern in any X-decomposition. However, it is true tha.t

an oeD can be obtained by considering the X 2 "pattern 303 the single element of a maximal set

of compatible X-patterns. In this regard, the X 2 -pattern is of interest to us. If X-patterns

can lose notches, they can also ga.in some, as will be soon shown. This should not surprise us,

however, since the previous idea of applying X-patterns and then completing the process with

the naive decomposition may also augment the X-patterns with a.dditional edges (while not

increasing the number of patterns).

Lemma 6. In an X-decomposition, any X-pattern which is not :reducible to an X-i,-patte:rn

can be reduced to a Y -pattern.

!

~------------------1
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Figure 5 Reductions on X-patterns.
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Proof: Before describing the appropriate sequence of reductions which will turn X-patterns

into Y -patterns, we must ensure tha.t reductions can be carried out freely without merging two

patterns in the process, which might increase the number of polygons in the decomposition.

If a. reduction brings an edge of an X-pattern in contact with any edge of the decomposition

not on the bmmdary of P a reflex angle will have necessarily resulted beforehand. Since the

definition of a reduction precludes intersections with the boundar; a.nd reflex angles, this case

will not occnr.

We are now ready to desrribe the reductions of Imdesirable X-patterns. We first ensure

condition 1 of Defmition 3.

Condition 1.

Figure 6-1) illu::Itrates the sequence of actions. As indicated, we assume that the pattern

is not of type X 4 but ha.s two N3-nodes adjacent to each other. Recall the notation for node

types in Fig.4. We move one of the N3-nodes hy translation in the direction indicated by the

arrow. The transla.tion continues nntil either an N2-node results from intersection with the

bounda.ry or we fall into one of the "extreme" instances depicted in Fig.7. Assume for the time

being that we are in the first case. If the N2-node occurs between the N3-nodes (case 1) we are

done. Otherwise (case 2), another reduction leads to 2.1), 2.2) or 2.3). We then iterate on this

process until no pair of N3-nodes are adjacent (the label STOP is meant to indicate that the

current reduction step is over and that we should check again if more reductions are necessary).

Convergence is guaranteed since each step adds a distinct N2-node.

Note that the figure investigates all cases except for those representing extreme instances

of X-patterns. These extreme cases are illustrated in Fig.r. Case 2 is to be Ullderstood as

representing two edges emanating from the same notch, one of which is sufficient to remove

the reflex angle. To handle all fOUf cases, we observe that in each of them we can pnme one

edge from the pattern along with the adjoining subtree and still preserve the non-reflexivity of

all angles. Recall that the notches attached to the removed piece, although now unresolved,

will be removed later on via the naive decomposition. The cnlcial observation i8 that pruning

patterns does not affect the overall number of patterns in the decomposition. The prunmg

b
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Figure 8 Example of reductions turn~ng an X6-pattern
into an Y7-pattern.
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process will converge since every removal decrea.s{'s tbe current number of Nl-nodcs by at least

oue. Unfortunat{'ly this sta.tement is a little hasty, since case 2 of Fig.1 surely removes at

least one Nl-node but. unfortUllatcly, also adds one. To establish convergence, we will have to

show that when in ca.se 2 the subtree pruned involves a single notch :1:, this notch can never

be fe-introduced by subsequent reductions. Let xy he the unique edge thus p:ru:ued. A simple

observation sbows that no furtber reduction of the pattern will ever bring any of its edges across

the segment Xli. For this reason x can never become an N2-node for the pattern. But being

an N2-node is a prerequisite for becoming an Nl-node again, therefore x is safely lOBt for the

pattern once and for all -see [3J for a detailed proof of this fact.

Condition 2.

Once Condition 1 holds, we satisfy Condition 2 by following the instructions outlined in

Fig.6-H,Ill). Proying convergence follows the lines given above and we do notel:;,.borate on it.

The reduct.ions shown in Fig.6 are to be applied iteratively to each Xk-pattern (k 01 4)

with adjacent N3-nodt's. Convergence is stra.ightforward. We haye illustrated the complete

reduction of an X 6 -pattern in Fig.S. III

s. The Polynomial Time AlgorithITl

The previous section proved the existcnce of an OOD consisting solely of Y and X 4 ­

pattt'rIls. In this section, we present a polynomial time algorithm for constructing such an

OOD. For the sake of clarity, we will ignore efficiency issues, merely showing that every routine

used in the algorithm runs in polynomial time. Later we will discuss efficient implementation.

Wc begin by constructing an oracle to answer questions of the form: "Does there exi:ot

a pattern connectiIlg k given notches 7" in polynomial time. This oracle will be used by the

decomposition algorithm.

Let v be an N3-node of a. Y-pattern. Remove the three edges vU"VVi,VUk adjacent to u;

the Y-pa.ttern becomes a. disconnected set of three subtrees, for which the removed edges play

the role of an X 3 -pattern. This lea.ds us to introduce the notion of extended X-pattern. An
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extended XI-pattern (l = Z,3) is either an X.-pattern by itself or an XI-pattern appearing as

fl subgraph of an Xm-pattern (m > l). It is clear that an algorithm for testing the possibility

of an XI-pattern between a given set of notches can also be used to determine the possibility

of a.u extended X/-pattern, as long as the angles formed at the notches by the subtrees of the

X m -pattern are known in advance.

To sec this, we must define the notion of extended notch and extended range. Let Vi be a

notch of the XI-pattern, and let W be a wedge centered at Vi. We define the extended range of Vi

as the set of points u such that Viti lies entirely within both P and W. In essence, the extended

range is the intersection of W with the visibility-polygon at Vi [7]. In general the wedge W will

he taken as the locus of rays (i.e. half-lines) which emanate from Vi and remove the reflex angle

at Vi. When dealing with ordinary X-patterns, the wedge W is simply determined by the edges

of P adjacent to Vi. In this case the extended range is simply referred to as range of V" since

it is then defined only with respect to Vi and P. In. the case of extended patterns, however, the

wedge will take into acc01mt the other edges already a.djacent to Vi, and will thus he smalier

than in the previous case. Later, we consider cases where the wedge W is taken as the entire

plane. This is done if we do not wish to remove a reflex angle at a particular noteL. In all

cases, anyhow, we say that we extend the notch according to certa.in angular specifications.

Lemma. 7. Checking for the possibility of all. (extended) Xl-pattern between I giyen notches

can be done in polynomial time (for l::::; 4).

Proof: For l = Z,3 it is clear that an Xrpattern will he possible if and only if 1) (l = 2) the

(extended) range associated with each notch contains the other notch; 2) (I = 3) the (extended)

ranges associated with the lnotches have a common intersection point forming three non-reflex

angles with respect to the notches. Computing each range can be done in O(n) time by first

computing the visihility-polygon [7], and then clipping it along the corresponding wedge. Next

we compute the intersections of all ranges, which can be done naively in O(n2 ) time. To handle

X",-patterns, we first observe that two different kinds mllst be considered, as shown ill Fig.9.

Assume wlog that the two notches Vi and Vj arc adjacent to the same N3-node. We successively

apply the reductions shown in Fig.9-b-c, with respect to A then B. Assuming wlog that this

1i

i
~

____IIIIIIII... ....J.,,

-... m ~
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be found

does Dot

b)

The interaction between X-patterns.

Defining B(i.j) and F(i.j).

A simple method ror computing X4-patterns.

t

Figure 10

Figure 9

Figure 11

a)
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does not create an ~Y3 or a Y5-pattern with an N2-node between A and B, we simply observe

that the four edges emanating from the notches will now be collinear with edges of P. This

puts the total number of configurations within O(c 4
). We CaIl. therefore check whether any of

them is feasible, which will lead to an O(nc 4
) time algorithm. I

'We can now tUnl to the decomposition algorithm. The procedure for determining a max-

imum compatible set of X-patterns is based on dynamic programming. We rely upon the

observation that jf a certain X 4 or Yi<-pattern belongs to an OCD of P, it decompose5 Pinto k

subpolygons, Pi, ... , Pi<, so that finding an oeD for each Pi yields an OCD for P. We compute

maximal compatible sets of patterns for each Pi. Since the notches of Pi are also notches of P,

any X-pattern of Pi is also an X-pattern of P. Conversely, we want to show that any X-pattern

of P involving only notches in Pi is also an X-pattern of Pi. This is quite important. Dynamic

programming proceeds bottom-up, so a maximal set of patterns involving notches of Pi must

be fotilld before we know the shape of Pi,

To solve this problem, we define V(i, j) as the set of notches between Vi and Vi in clockwise

order, so V(i,j) = {Vi,V"+l, .. -,tJi}, with index a.rithmetic taken modulo c. Let ZI, ... ,Zk be

the notches of a.n X-pattern, T, given in clockwise order around the boundary of P, and let

'/(i,j) be the notches of P between z,,- and Z ..+l in clockwise order (z .. = Ui-l,Z..+i = ui+d.

We will show that no X-pattern with all its notches in V(i,j) can. intersect T. Assume tha.t an

X-pattern S intersects an edge e of T. Consider the shortest segment which is collinear with

e and has both of its endpoints on the boundary of P. This segment partitions P into two

polygons PI and P2 (Fig.lO). Since the path of T between z.. and Z ..+i is a convex polygonal

line, it lies entirely in PI or P2 (say, Pd- Since all the notches in V(i,j) are notches of PI,

S must have notches in P2, a contradiction. This indepcudence result C!ill be understood in

combinatorial terms. It sta.tes that two X-patterns are intersection-free if and only if their

notch sequences a.re not intermixed, i.e. one sequence falls completely between two consecutive

elements of the other sequence.

We next define S(i,j), for every pair of notches Vi, Vi, 3S a maximum compatible set of XII.

or V-patterns in V(i,j). To achieve our ultimate goal, i.e. evaluating S(l,c), we compute all
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Consider a Y -pattern which is used in an OeD and has at least one N2-node, Vi· This

node splits the Y-pattern into two Y -subtrees, so there exists an index j such that

pat.temR

Then y,'e

of an

patchillg

start by

(2)

B. Chazelle and D.P. Dobkin

IS(i, j)1 = IS (i + 1, i 1 - 1)1 + ... + IS(i""-l + 1, i"" - 1)1 + 15(i"" + I, j)I,

valucs S(i,j) from {S(k,l) I V(lc:,l) C V{i,j)} using dynamic programming. This Call be done

directly if Vi and vi are not connected to the same pattern. \Ve simply test an combinations

{Sri, k), S(k + l,j)} for all Vk E Vii,;; - 1). Otherwise we have to distingu.ish whether Vi and

Vj should be cOIlIlected together via an X 4 or a Y-pattern.

To handle the latter case, we compute all Y -patterns which might belong to an OeD

via dynamic programmin~. We compute Y -subtrees (i.e. subtrees of Y -patterns) as well as

Y -patterns by patching Y-subtrees together. To prevent the number of computations from

blowing up, however, we keep only the Y-subtrees that are candidates for belonging to an

OGD. A Y -subtree is considered not to be a candidate if a.t the time it is computed we are

ensured of the existence of at least one OOD which does not use this Y-subtree (although we

may not know this oeD explicitly yet). As a shorthand we sa.y tha.t a pattern or a Y-subt.ree

lies in V(i,;'j if all it.s notches do. It now remains to formalize the intuition given here a.nd

describe the polynomial time algorithm.

1. One of the Y-subtrees lies in V(i,,;i) whereas the other lies in V(j+ 1,i).

2. All the other patterns in the OGD lie totally either in V(i,j) or in V(i + l',i).

86

We will consider the candida.cy of the Y-subtree in V(i,i) immediately after S(i,j) has been

computed. We first observe that if Vi, Vi],'" , vi~ is a list of its notches in clockwise order, we

ma.y dismiss the candidacy of the subtree if the following equality is not satisfied:

where \5(k,1)1 represents. the number ofpattems in S(k,l).

Note that the last term in the right-hand side is to be ignored if im. = j. If Relation (2) is

not satisfied, the right-hand side is strictly smaller than 15(i,j)l. When considering candidate

Y -subtrees, we have the idea in mind that only oue pattern win ha.ve notches in both V(i,;;)

and V (i + 1. i). It would then be l..lllreasonable to use any Y -subtree which does not satisfy (2),

since the patterns of S (i, j) would provide a better decomposition altogether.
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This simple fact will be consequential in achieving a. polynomial time algorithm. We still

have to cope, however, with the prospect of keeping au excessive number of candidate subtrees

for each pair (i,j). Another geometric observation is in order. Let L. (resp. Ril denote the

edge of P adjacent to Vi and preceding (rcsp. following) Vi in clockwise order. Whenever L i or

Ri is used in designa.ting an angle, it is understood as directed outwards with respect to Vi- Let

t be the edge adjacent to Vi in the Y -subtree lying in V(i, j). The edge t is called the arm of the

Y-subtree. When the arm of a Y-subtree enters the expression of an angle, we assume that it is

directed towards the notch (here t is directed towards Vi j. Among all the Y -subtrees in V (i, j)

for which 11i is an N2-node, (2) is true and u = L (L .. , t) < 180, we may keep the Y -subtree T

which minimizes the angle u a.s the only candidate with respect to V(i,i) (Fig.ll-a).

We define B(i,j) as a. pointer to the arm of T. If there is no such subtree, B(i,j) 1S O.

Patterns amI subtrees will be represented by linked lists, so B(i, j) win provide a.ccess to the

entire Y-subtree T whenever necessary. Carrying out the saIlle reasoning cou.nterclockwise 1Il

V(i,i) with now 11i as an N2-node, we define F(i,:f) in a similar fashion (Fig.H-b).

Having established our notation, we are now in a position to present the decomposition

algorithm. We assume a function (ARC) for assembling Y -subtrees when computing S(i, j).

ARC is in general a pair of Y-subtrees taken from B(u, v) or F(u, v). If the two subtrees can

be pa.tched together and form a Y-pattem T, the function 0 returns (C,T), where C is the

ma..ximum number of wmpatihle patterns whith can be applied in V( i, j) including T. We

return to a discussion of this flmrtion after a presentation of the algorithm. Before proceeding

with a formal description, a brief overview might be helpful.

After all necessarj preprocessing in STEP 1, we usc nested loops to implement the dynamic

programming scheme. Each step involves computing S(i,j) for a given value of i and j. We

start by computing the best Y -pattern which cOlmeds Vi and Vi (STEP 2). This involves

patching precomputed candidate Y-~mbtrees. STEP 3 computes a. maxilllUIu set of compatible

pattems in V(i, il, denoted L, assuming that Vi and Vi do not belong to the same pattern.

Then we compute M, defined similarly, with the difference that we now allow the presence

of an X 4 -pattcrn connecting Vi and'Vj. Finally the Y-pattern of STEP 2 (if any) is used to

compute N, so the maximal set among L, AI, N is finally chosen as S(i , j). STEP 4 computes
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STEP 1:

STEP 2:

Procedure ConvDec(P)

Let

B. Chazelle and D.P. Dobkin

j:=i+d [mod c]

do STEPS 2,3,4

Compnte the best Y -pattern connecting Vi and vi as follows:

For each k; VI< E V(i + 1,;" - 1), compnte the set Q = U1 :::;i:::;4 Qi, where

Ql = {(F(i,k),B(k,j))} /* N2-node on path */

Q2 = {(E(i, k - 1), F(k,j))} U{ (B(i,j - 1), F(j, j))} 1* no N2 or N3 nodes on path

for d = 1, , C - 1

for i = 1, , C

the Y -subtr-ccs which lie ill V(i, j) and are considered as candidates. These subtrees are to be

used in further iterations through STEP 2. Once a. maximum compatible set of patterns for P

has been determined, we finish off the decomposition using the naive decomposition (STEP 5).

The preprocessing involvcs checking that P is simple and nOll-convex. We make a list of

the notches VI, .•. ,Ve , and we initialize all B(i,i) and F(i,i) to O.

88

*/
The

maJClillUTIl

C value in Q.

The elements of Q a.re pa.irs of the form (C, T). Let T be the Y -pat tern which has the

1* N3-node on pa.th */

1* N3-node on path *I

Q3 = {(B(i,k - l),B(k,j - I»}

Q4 = {(F(i+ I,k),F(k+l,j))}

STEP 3:
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STEP 5:

STEP 4:

Compute B(i,j) and F(i,j).

89Optimal Convex Decompositions

L = maxvkEV(i,i-l){S(i,k)US(k+ l,j)}

1* cOrI'esponds to a pa.tching together of Y -patterns *I

for a.ll X4-pattcrns Xi,a,b,} connecting Vi,tla,tlb,lJj, with Va,Vb E V(i,J·).

j" corresponds to the use of an X<l-pattern "!

M = max{{Xi,a,b,j} US(i + 1, a -1) US(a + 1, b - 1) US(b + 1,j - In

N = {the Y-pa.ttern T of STEP 2}US(i+ 1,i1 - 1)U ... US{ip - 1 + l,ip -l)US(ip +

l,j - 1)

where Vi, Vi, , ... , Vip' Vj are the notches of T in clockwise order.

1* corresponds to the use of the Y -pattern T */

Finish off the decomposition using the na.ive decomposition, i.e. a.dding one polygon for

each remaining notch.

Let S(i, j) be the maximum of L, M, N with respect t.o cardinality, where (max is taken

with respect to cardinalit.y)

(STEP 5).

3 are to be

ems for P

:e a list of

3 on pa.th

The remaining of this section is devoted to explaining the various steps of the algorithm

and analyzing its cornplt·xity.

1. Patching Y -~ubtrees (STEP 2)

1 has the
The function (ARG ) takes two Y-subtrees and constructs a Y -pattern if these two sub­

trees can be pa.tched together. ARG is any arg-ument of the form: (F(i,k),B{k,.j)), (B{i,k­

F(k,j)), (B(i,k -l),B(k,i -1)) or F(i+ l,k),F(k + 1,j)), with Vi,Vk,Vj occurring ill

clockwise order.
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Computing the function <A1~G>.Figure 12
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Let F(i,k) = T and B(k,j) = V, with r and 8 their respective arms. If l(r,8) < 180 and

Optimal Convex Decompositions

Case 1. {F(i, k), B(k,j)) (Fig.12-a).

91

\
)

I
)

T =F 0 and V # 0, then set (F(i, k), B(k, j)) = (IS(i, k)1 + IS(k, j) 1+ 1, Y -pattern: T UV),

else (F( i, k), E(k, j» = O.

Case 2. (E(i, k - 1), F(k,j) (Fig.12-b).

Let B (i, k - 1) = T and F( k, j) = V. If an extended X 2 -pat.terD. is possible between Vi and

Vi

then set (B(i, k - 1), F(k, j» = (!S(i, Ie - 1) + IS(k, j) 1+ 1, Y -pattern: {vitli} UT UV),

else (E(i, k - 1), F(k, j)) = O.

Case 3. (B(i, k - 1), B(k,j -1) (Fig.12-c).

Let B{i, k -1) = T and E(k,] - 1) = V. If an extended X 3 -pattern W is possible between

(B(i, k ~ 1), B(k,)' - 1)) = (lS(i,k -1)1 + IS(/::,)' - 1)1 + 1,TU VUW),

else {B(i, k - 1). E(k, j - 1) = O.

Case 4. (F(i + 1, k), F{k + l,j)) (Fig.12-d).

Ld F(i + 1, k) = T and F(k+ 1,j) = V. If an extended Xs-patteru W is possible bFtween

{F (i + L k), F (k + I, j) = (I S (i + 1, k) I+ IS (k + 1, j) i + 1, T UV UW),

",1st' (F(i + 1, k), F(k + 1,j) = O.

Berause of R.elation (2). it is d",ar that STEP 2 computes the Y -pattern connf'ctiug" Vi aud

Vj (if any is to be found) such that the number of compatibl", patterns which can be applied

in V(i, i) is maximum. All we have to check is that all cases are indeed handled in STEP 2.

COllsider the path from Vi to Vj ill any such Y -pattern. If it contains an N2-nod"" it will be

detect.ed in Q 1- Otherwise one N3-node may appear on this path aIld all these candidates will

be reported in Q3 and Q4. Th", fimt.1 case, handled by Q2, assumes that the path from Vi to Vi

is free of N2 and N3-nodes.
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2. Computing S(i,j) (STEP 3)

93
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Assume by induction tha.t Slit, l) has been computed for all Uk. VI E Vii, i) (except for

S (i, i)). The a.lgorithm investigates the three following cases in turn:

L Disallow the presence of any pattern having both Vi and Vj as vertices.

2. Consider the possibility of an X 4 -pattern connecting Vi and Vj'

3. Com,ider the possibility of a Y-pattcl"n cormecting Vi and vi'

Lemma 7 shows that STEP 2 aIld STEP 3 can be accomplished in polynomial tin)e. Cor-

rE'ctness follows directly from previous discussion.

3. COrIstrw:ting Y -,lJubtrcclJ (STEP 4)

We compute B(i,il a.nd F(i,j) by iteratively patching ¥-subtrees together via two func-

tions, Y(i, ARG) and Y'(i, ARG). ARG is an argument of the form B(a, b) or (B(a, b), B(c, d))

(or the same with F). \Ve desnibe these functions with respect to D's only, all other cases

being similar.

Case 1. Y(i, B(a, b)) (Fig.13-a)

The vertices Va, Vb. Vi occur in clockwise order. Let T = B(a, b). Extend the notch at Va to

take into account the arm of T. Extend the notch a.t Vi by making its a.ssociated wedge be the

entire plane. If an extended Xz-pattern is possible between Va, v,. and if w = L(Rt, v,-va ) < 180,

set Y(i, B(a,b)) = (Y-subtree: {ViVa} UT), else Y(i,B(a,b)) = O.

Case 2. Y(i, {B(a, b), D{e, d)) (Fig.13·b)

The vertices Va' Vb, V e , Vd, fl,. occur in clockwise order. Let T = B(a, b) and V = B(c, d).

Extend the 110tch at Va (resp. V e ) to take into account the arm of T (resp. V). Extend the

notch at Vi by making its associated wedge be the entire plane. If an extended X 3 -paUcrn is

possible between Va, ve , v" compnte the locus of its N3-uode. Let S be the point in the lOCH::;

which maximi1.es the angle w = L (R;, v. S) .

If w < 180, set Y(i, (B(a, b), E(c, d») = (Y-subtree:{Sv;) U{Sva } U{Svc } UT UV),

else VIi, (B(a, b), E(e, d)) = O.
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We defiue Y'(i,B(a,b)) in the same way as Y(i,B(a,b)), with L(R.,ViV.. ) replaced by

I(ViV.. ,L;) (Fig-.13-c). Y'(i,F(a , b)) is defined similarly, so we omit the details. We are now

ready to implement STEP 4 of the decomposition a.lgorithm. We will only describe the COlU-

putation of E(i, J')' since the case of F(i, i) is strictly similar. We begin by computing the four

sets Bl, B z , B S1 B4,. Let C be the value of IS(i , j)1 computed in Step 3,

B 1 = { Y -subtree of Bli, k)}, for all Vic E V(i, j - 1) such that 18(i, k)1 + j5(k + 1, j)1 = C .

1* Vj is not a notch of the Y-subtrcc *1

B z = { Y'{ i, B( k, j))}, for all Vic E V( i + 1, j - 1) such that IS (i + 1, k - l)i + 18 (k, j) I = C .

1* Vi'S neighbor is an N2-nocle '" /

B s = {Y'(i,F(i+ l,j))}. if IS(i+ 1.)')1 = c.

/ * Vi'S neighbor is an N2-node */

B 4 = { Y'(i, (F( i + 1, k), F(k + I, j)))}, for all Vk E V(i + 1, j - 1)

such that IS(i + 1, k)1 + IS(k + l,i)1 = c.

1* v;'s neighbor is an N3-node *I

Let T be the Y -subtree of B 1 U B z U B 3 UB 4 which maximizes the angle tI = L (t, L.),

where t is tUlderstood here as the arm of T directed outward from Vi (Fig.H). W{, define B(i, j)

as a pointer to the arm of T (now understood to be directed towards v.).

Computing B(i, j) ca.n be clearly done in polynomial time, according to Lemma 7. Not.e

that Y -subt.rees can be merged in constant time by linking their respective arms together. ill

through B 4 evaluate all candidate Y-subtrees adjacent to I)i and lying in V('i,j), and keep a

single candidate, i.e. the subtree which has maximum angle u. We can show by induction that

it is sufficient to consider only the Y-subtrees in the E's and F's. B 1 considers all subtrees

which do not have both Vi and Vj as notches (Fig.14-a). B 2 and B 3 compute the subtrees

whose vertex adjacent to v. is an N2-node. Note that B 1 and B 2 may share common subtrees.

The two possible configurations are illustrated in Fig.14-b,c. Finally Bt,I detects all candidate

subtrees such that the vertex adjacent to v. is an N3-Ilode (Fig.14-d).

4. Compteting the OGD (Step 5)
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Optimal Convex Decompositions 97

The la~t step of procedure ConvDec consists of removing the remaining notches with the

naive decomposition. This can be done in polynomial time, leading to the main re~mlt of this

section.

Theorem: An optim al convex decomposi tion of a simple polygon Call be computed in polyno-

1111al time.

4. Towards an Efficient Implementation

We win not make any attempt to evaluate the exponent in the polynomial expression

bonnding the time cornplf'xity of the previous algorithm. Clearly, it is prohibitively high. To

produce a substn.ntial savings in the running time of the algorithm, we first identify routines

which need to be made more efficient. We essentially have three items to exammc:

1. The naive d<-cornpositioll.

2. Computing (extended) X 2 and Xs-patterns.

3. Computing X 4 -patterus.

As we will Sl"e, improving thl" first two routines can be done without otherwise altering

procedure CO'nvDec. Unfortunately, following the exact prescriptions of the procedure would

lead to computing all possible X 4 -patterus. Since we may have on the order of c4 such patter.!.ls,

discoveriug struc tural facts to limit the number of candidates to examine i~ in order. To begin,

we consider the implementation of the naive decomposition. This allows us to introduce most

of the tool:,; used later Oll.

1. The Naive Decompo8ition

Recall that the naive decomposition involves removing each notch in turn by means of a

simple line segment naively drawn from the notch. For simplicity we will choose a st'gmcnt

collinear with one of the edges of P adjacent to the notch. The degree requirement;:; we made in

the original definition of the naive decomposition can he relaxed here, since their only motivation

was the simplification of subsequent proofs. Each line segment extends from a notch to the first

intersection with the current decomposition. This can be easily accomplished in O( n + c) time,

but this is still too slow for our purposes.
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The improvement which we propose involve" O(n) time preprocessing at the outset of the

computation. Before describing this preprocessing, a few more definitions are in order. A

convex polygonal line is a sequence of vertices {al, ... ,ap } such that L(a'-(]i-l,Uilii+l) ~ 180,

for each i stKL that 1 < i < p. The sequence is called a r:onvez r:hain if {al, ... , a1" al} forms

a convex polygon. NotC' that in this case al, ... , ap corresponds to 1) clockwise traversal of the

polygon. It is known from [3,6[ that if the vertices of a convex n-gon are stored in a li11ear

array it is possible to compute its intersection with any line in 0 (log n) time. Unfortunately,

hetween ef'lch pair of notches Vi. vi+l. the bmmdary of P certainly il'l a convex polygonal line

but not w:ccssarily a convex cha.in. This motiva.tes the following preprocessing.

this

t = m-

the

and

have

angles

Proof:

B. Chazelle and D.P. Dobkin98

Partition the h01md:>.ry of P between two consecutive notches into contiguous convex

chains. Let L i {YI, ... , Yp } he the convex polygonal line given in clockwise order, with

'Yl = Vi f\.nd YP 1Ji+l' If neither the angle 1(1I1Yk,Yl!J2) nor the angle L(llkYk-l,Ykyd is

reflex for any 2 :s: k ~ p, L i is a convex ('hain and remains unchanged. Otherwise, let ]1

be the smallest k such tha.t {YI .... , VI<;, Yk+1, vd is a non-convex polygon, i.e. such that ei­

ther L(YIYk+l,:/1!12) or L(Yk+lVIc,llk+1yd is reflex (Fig.I5-a). We define 0 1 as the convex

chain {Yl ....• Yj.}. Next we apply the same procedure recursively on the remaining pa.rt of

L i . This leads to defining C 2 a.s {Vi,,"" !lj,}, with i2 being the smallest k > i1 such that

(Y;.Yk+1,YhYh+1) or (Yk+1YIc,Yk+1YiJ) is reflex. We iterate on this process until we reach lip,

thns partitioning L .. into t conse'Cutive convex chains e l , ... , Ct.

We apply the same treatment to ea.ch pair of notches (Vi, Vi+l) and renumber the chains

accordingly. This leads to a. partitioning of the whole boundary of Pinto m consecutive convex

('hains, 0 1 , ... , em, in clockwise order. Letting Xi, Xi+l be the endpoints of Ci in clockwise

order (with Xl = X m +l = vIl' we call the Xi the pJeudo-notcheiJ of P. Note that all notches are

pseudo-notches hut the ("onverse is in general not true (Fig.15-b). This preprocessing requires

O(n) opera.tions. We next show that the number of convex chains is of the same order of

magnitude a.~ the number of notches.
Lemma

Lemma 8. m:S: 2(1 + c).

Proof:

stored

v in a
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et of the

,rder. A

) :-:; 180,

Proof: COllgider the vertices p, of P which are not notches of P and let U be the sum of all the

angles L (p,P;+l ,Pi-lPi). Similarly for aU vertices p;" which are notches of P, let V be the sum

value of all thc angles L (Pj~lPj,PjP;i+d. It is a classical result of geometry that

1} forms

al of the
u - V = 360. (3)

a linear

tunately,

anal line

I convex

er, with

For each convex chain Ci = {al ... . , tl p} such that (1.1' is not a notch of P, let Up+l be the vertex

of P adjaccnt to ap in clockwise order. Wc define Ui as the sUIn of all angles /(ajai+t> ai-taj),

for ali 2 :-:; j <::: p. Let Ut ., ... , U iI be the values thus obtained. By construction the polygon

{a 1 , ... , o. p , o. p +l, a 1} has a reflex angle either at a1'+ 1 or at fl.1· It follows that if c (resp. d) is

and +180 degreeg, negative if there is a reflex angle at (1.1'+1 (reap. ad. posihve otherwise, we

!/JcYl) is

e, let jl

have

U t = 360 - (c + d) ~ 180. (4)

that ei-

~ convex

; part of

1ch that

e chains

~ convex

lockwisc

ches are

requires

order of

Since none of the U.;'s accounts for the reflex angles of P, we have Ll:Sj:5t Uii ~ U. Also if,

between a pair of consecutive notches, P consists of a single convex chain, no Ui is defined on

this portion of P. whereas if it cOllsists of p chains, p - 1 U;'s are defined. This implies that

t = m - c. Comhining this fact with (4) we derive

180(m-c) <::: L Vi, ~ U,
l:Si:St

and from (3)

U = 360 + V ~ 180(2 + c),

which completes the proof. ill

This leads to the following result.

Lemma 9. In procedure ConvDec, STEP 5 can be a.ccomplished in time O(n + c2 Iogn).

Proof: We assume that P has been preprocessed as described above, with each convex chain

stored in a linear array. For each remaining notch v, in turn, let t be the ray emanating from

11 in a direction removing the reflex angle at v (for example the direction of one of the edges
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--"
D

1

)
2

ndjaef'nt to lJ). Among the intersection·points of t with the edges of the current decomposition,

we mnst rl..tcrmine the closest to v. To do so, we compute all the intersections between t anrl the

internal edges of the decomposition, i.e. the edges not on the boundary of P. It is easy to "how

by induction that there are 0(.-:) such edges, hence O(e) intersection-points to compute. Next

we COmp1.lte the intel'seetion of t with each convex chain of P in turn, nsing: the fast algorithm

of [G;. The running time of this method will be O(n + c2 log n). including preprocessing. III

2. Computing Extended Patterm

-We refine the preprocessing described above. Since the compucatioll of X-patterns is

intimately based Oil the notion of ranges, we precompute the visibility-polygon with respect

to each notch at an overall cost of 0(c2 log n) time and space. This may seem a paradox

since storing all these polygons may require as much as 8(cn) storage. The cnD. is that only

significant vertices of the visibility-polygons will be stored. This ecollomica! description of the

visihility-polygon of a notch v is called the Iwperrange of v. In the next paragraphs we describe

how to compute superrallges and then show how to use these new structures efficiently.

Let ti bc a notch of P and ·tl, ... , tp be the list in clockwise order of all the pseudo-

notches visible from v. Note that scanning tl,'" ,tp corresponds to a clockwise traversa.l of the

boundary of P as well as a clockwise sweep around ti. Let Vi be the ray emanating from v

with the direction from v to tli and let Do (resp. D p+1 ) he the ray passing through the edge

of P starting from v in clockwise (['esp. c01mtercJockwise) order. The set of rays Do, ... , D p+ 1

partitions the region of P visible from v into p + 1 simple polygons, all adjacent to v. Typically

a polygon is comprised between D i , Di+l and a convex polygonal line on the boundary of P.

Let (1,i and b, be the endpoints of this convex line (with hi following ai in clockwise order

Fig.16). For each notch ti, we define the 8Uperrange of ti, denoted SR(v), as the ordered list

The next result states that supcrranges can bc computed very efficiently.

Lem:rnB. 10. An n-gon can be preprocessed in O(n) time so that the superrange of a.ny of its

notches can be computed in O(clogn) time.
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102 B. Chazelle and D.P. Dobkin

Proof: TllP proof of this resnlt i8 too lengthy to be included here. We refer the rea.der to [3] for
I

the adails of the proof. In [7] EI-Gindy and Avis present a linear algorithm for computing the

visibility-polygon from any point in P. Although their algorithm cauliot be used here since it

i8 too slow for our purposes, we can still use it as a basis to give intuition for our a.lgorithm.

EI-Gindy a.nd Avis's algorithm can be seen as an extension of a Graham scan. It essentially

involves tra.versing the boundary of P in one direction, occasionally backing up but never more

than once per vertex. Our algorithm is conceptnally similar to [7]; the only difference comes

from the traversing scheme used. Instead of going from one vertex to the next, indeed, we go

from one convex chain to the next. In this regard, the data type "edge" in [7] becomes, in

onr algorithm, the data type "convex chain". An important feature of the former data type

which we lose in our algorithm is the property that a ray scanning an edge moves either totally

clockwise or totally counterclockwise. A convex chain, instead, can change directions at most

twice. Howeycr, whenever entering a new chain, we can use the fast algorithm of (6] to compute

the changes of direction in O(Jog nJ time. This means that we can rewrite the entire algorithm

of [7], now takiug convex chains instead of edges as our basic objects. The price to pay wiH be

a factor logn in every step of [7],s algorithm. Since there are only O(c) convex chains, however,

the O{n) algorithm of [7] now becomes an O(c log n) algorithm. I

The notion of supcrrange can be of great use for many geometric problems and is thus

interesting in its own right. To appreciate its usefulness to our specific decomposition problem,

we need introduce a function of two arg-uments, R(v, D), where v is a notch of P and D is a

ray emanating from v. Let D i , D.+ 1 be the two rays (introduced earlier in the definition of

superranges) between which D lies. If L(vb., vai) is reflex, R(v, D) is set to 0, otherwise it

is set to the segment vv, where II is the intersection of D with aib •. Clearly, R{v, D) is still

well-defined if D is a directed segment emanating from v instead of a ray. The next two results

give motivation for these definitions.

Lemma 11. Once the superrange of each notch has been cOlnputed, R(v, D) can be computed

in O(c) time for any notch v.

Proof: Trivial. I
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r to [3] for

)Uhng the

re since it

~lgorithm.

~fisentially

ever more
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lef totll.lly

IS at most

) compute

algorithm

,a.y wiH be

, however,

ud is thus

1 problem,

.nd D is a

finitioD of

herwlse it

D) is still

wo results

computed

Lemma 12. If v IS a notch of P aud V:.c is the edge of au X-pattern, x lies all the gcgment

R{ v, vx).

Proof: The result is obvious if x lies on the bOlmdary of P, since it is then a notch of P and

R(v,vx) is exactly tlx. Suppose that x is an N3-node a.nd vz contains R(v,vx) (Fig.17). Let

(a., b.-) be the pair of SR(v) such tha.t v:z: intersects aibi. The segment a,-b. partitions Pinto

two polygons, Pi and P2 , with say PI containing x. Since the portion of the b01mdary of P

hetween ai and bi is a convex ch,~in, PI is a convex polygon, therefore the X-pattern cannot

have notches in PI, which is in contra.diction with the fa.ct that a.1I the angles formed by a.n

X-pattern are non-reflex. III

We nt'xt show how to use these results to compute extended X 2 and X 3 -patterns efficiently_

For simplicity we will first consider the cases where the patterns are standard, i.e. not extended.

It will then be easy to gellera!i~e the results obtained to extended pa.tterns.

- Detecting X 2 -patterns

Lemma 13. With 0(1'1 + c3 + c2 log 1'1) preprocessing it is possible to check for the possibility

of a.n XTpattern between any two notches in constant time_

Proof: The preprocessing involves computing the superrange of each notch a.s well as the seg-

ments R(Vi, ViVj), for all pairs of notches Vi, Vi- Lemmas 10 and 11 show that this can be doue

in O(c 3 + c2 10g 1'1) time. From Lemma. 12, it then follows that an X 2 -pattern between Vi and

Vi is possible if and only if R(v;, vivi) = ViVj and the segment Villi removes the reflex angle at

both Vi and Vj. II

- Detecting Xs-patterns

Computing Xs-patterns is somewha.t more complicated_ We need some additional prepro-

cessing which we next describe. R.ecall that Rt and L. a.re the directed segments from Vi to

the next vertices of P respectively followlug and preceding Vi in clockwise order. This notion

of direction allows us to define R(v;, R;) and R(v;, L i ) without ambiguity. Similarly to give

full mea.ning to angles of the form L (ViZ, R(v., D)), the segment R( Vi, D) will be understood as

assuming the same direction as D.
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(
,/

For each pair of notches Vi, Vj, we define the two points 1'"ij and lij as follows: Virij is the

rightmost segment in the range of Vi, visible from Vi' More precisely, if both R i and Li lie on

the same side of the line passing through tJiiJj and L(ViVj, Ri) < 180 (Fig.I8-a), we determine

clockwise traversal of the boundary of P. We assume that G-p-l-l does not lie on the segment

Vibp (unlike in Fig.I8-b). We may have Vi = bp = ap+l, however. Let t denote the segmeut

R(Vi, Li) if I (R(v" L;), v,(]p+d < 180 (Fig.I8-c), and the segment v,ap+l otherwise (Fig.I8-d).

If we actually have L(ViVj. t) < 180, we define t as R(vi, ViVj). Finally if L (t, R.) < 180, we

define rij as the endpoint of t (# Vi). If any of the a.boye conditions fails, rii is O.

We repeat the same process OIl Vi with respect to Vi. If R,. and Li lie on the same side

of the line passing through Vil1j, we first determine the pairs (aI" bp ) and (a p+l, bp+d from

SR(vJ·) such that Vi occurs between bp and (lp+l in clockwise order. We will suppose that 01'

otherwise. Similarly, if I(t, Ujv;) < 180, t is reset to R(uj,vjV;) 80 that we can define Ii' as the

endpoint of t other than Vi if I (Li , t) < 180. In all other cases, lji is set to O.

With the superrange of each notch at our disposal, we can compute each rij and Iii in

O(e) time, w?-ich yields an 0(1'1. + e3 + c2 10g 1'1.) overall preprocessing time. We are now ready

to describe the computation of Xs-patterns.

Le:mrna 14. With O{ n + c3 + c2 10g n) preprocegsing it is possible to check for the possibility

of an X 3 -pattern between any three notches in constant time.

Proof: Let Vi, Vi, Vk be three notches of P. We wish to give a set of necessary and sufficient

and C s = vilii n I1klki' One of the following is true: 1) C 2 is further from Vi than C 1

C = C 2 ; in case 2, set C = G3 , and in case .3 set C = G 1. Similarly we introduce the points A

and B, defined like C with respect to (v;, v,l;) and (Vic, 11;) respectively. From now all, we will
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)
assume that A, B a.nd C fall in Ul.Re 3. The other cases are treated in a similar way and may

thus be omitted. We can show that Vi, vi, tJ,l; are the notches of an X3-pattern if and only if:

1. Vi, Vi, Vic occur in c10ckwiRe order Oil the triangle ViVj'JJJ:..

2. f'ij,Yjk,f'ki,lii!:.,hj,l ji are all distinct from O.

3. The points A, B, G are well-defined.

4. The polygon Q = viCviAvkBvi is simple and has a. non-empty kernel (rc~a.ll that the

kernel of a polygon is the region visible from every point in the poly~on).

All these conditions can be easily checked in constant time with the preprocessing described

above.

We say that a point is range-visible from a notch v if it lies in its range, i.e. if the segment

lies totally within P and removes the reflex angle at v. We define the wedge W(az, ay) as the

region swept by a ray pivoting in clockwise order around a from ax to ay. Let S be the N3-node

of an X 3 -pattern between Vi, Vi, Vk. To prove that the second condition is also necessary, we

show that rij =I- 0, all of the other cases being similar. Since the three edges of the pattern must

lie in the triangle Vi, Vi, Vk, the first requirement (illustrated in Fig.I8-a) is obvious. Considering

the pairs (all" bp) ~d (a p+1, bp+d it is equally clear that the configuration of Fig.18-b cannot

lead to an X 3 -pattern since we must have L(Svi' SUi) < 180, where S is the N3-node. Iudeed,

SUi must intersect bp ap+1 with possibly Vi = b1Jl since S must be visible from both Vi and Vi·

This remark shows that not only are the configurations of Fig.lB-e ,d the only ones possible,

but also that S cannot lie in the wedge W(Viap+i, R;). The other conditions to sa.tisfy in order

to define rij express the fa.ct that S lies in the triangle viviv}, as well as the range of 'Vi. Also,

since we must have L (ViS, ViVi) < 180, it is legitimate to set t to R(vi, 'Vitli), if L (Vi'Vj, t) < 180.

Finally if L(t, Rd > 180 no point visible from Vj can be range-visible from Vi, so we can set rii

to o. Thus, when an N3-node exish, all these conditions will be satisfied and S cannot lie in

the wedge W(Virij, ~).

As mentioned earlier, the points 0.0, bo, 0.1. b1, ... , ap , bp occur in clockwise order around

the boundary of P, therefore we must have L(Vil;",Virij) < 180 if lik #- D and rii =I- 0, since

Vi, Vj, Vk occur in clockwise order. It follows that if .4., B, C exist, the polygon Q must be simple.

Supplied by The British Library - "The world's knowledge"



108 B. Chazelle and D.P. Dobkin

To prove that these points are well-df'fined, we first show that SVj intersects Virij' Ag we have

seen that SUi intersects Vi(J,p+l, thus implying that Vi.rii is not defined as R( lJi, "liVj), we only

have to show that SVi intersects vir'i whenever this segment is defined as R(Vi, L i ). Since S

C:1.nnot lie in W(R(Vi, L;), Rd, SUj must intersect ViM (Fig.19-a). Also SUj cannot intergect

Mrij. :'lince .'; wonkl thpn belong to a convex polygon where no N3-node point ca.n lie (Lemma

12). This proves our cla.im, and shows that rij (as well as i ji by a similar reasoning) lies outside

the tri:1.ngle SUi!)j (Fig.19-b). Finally, :1.S we know that 5 cannot lie in the wedges W(V;rii' R;)

and W(Lj,vjlji), we derive L(tJiS,Virij) < 180 and L(vjlji,VjS) < 180 which, combined with

the previous result, establishes that Virii and Vi1ji intersect. This proves the existence of the

point C as well as points A and B, by symmetry. Since S must lie in fV(v,lik, Virij}, the same

reasoning applied. to Vi aud. Vj; shows that S lies in the kernel of Q.

The four conditions having proven necessary, we next show that they are sufficient. A"sume

that they are all satisfied (Fig.19-c). Since Virii is range-visihle from Vi, and so is Vjiii from vh

Condition 3 shows that C is range-visible from both Vi and Vj. It follows that the boundary of

P cannot intersect strictly with ViC or ViC' and by symmetry, cannot intersect with the edges

of Q. Therefore, any point of its kernel is range-visible from Vi, Vj, Vic and is the N3-node of

a possible X 3 -pattern. Note that all three angles around the Steiner point are ensured to be

< 180 siuce the kernel of Q lies within the triangle V.VjVk· III

Our techniqnes for computing X 2 and X;; patterns can be used to handle extended patterns

as well. Patching together Y -subtrees in STEP 2 can be done along the same lines and llO further

explanation is necesgary. The only remaining question to address concerns the computation of

Y (i, ARG) and Y'(i, ARG) in STEP 4. The most general case corresponds to the computation

of Y(i, (B(a,b),B(c,d))) (Fig.IS) (Y' is handled simila.rly). We extend the notches tJa,Vc,tJi

accordingly, aud (referring to Condition 4 in Lemma 14) compute the kernel of Q. In doing so,

we drop all requirements involving R i , since we do not have to remove reflex augles at Vi at

this point. Once again, details are tedious but straightforward - see [3]. We conclude

Lemma 15. After G(n + c3 + c2 log n) preprocessing it is possible, in constant time, to

1. check for the possibility of an extended X2-pattern between any two notches,
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2. check for the possibility of an extended X 3 -patteru between any three notches,

3. eva]uflte the functions Y and Y'.
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3. Computing X 4 -pattern8

We now have to face the most difficult ta.sk in our quest for an efficient implemcntation.

Improving tbe previous routilles simply relied on increasing the amount of preprocessillg with­

out otherwise altering the basic nature of the algorithm. The excessive number of possible

X4,-patterns require conceptual changes in our algorithm. These cbanges are based on the

obsenation that of all the (~) potential X 4 -pattems, only O(n3
) need be retained for consid­

eration. Implementing the selection requires structural facts about the nature of X,ji-patterns.

Definition 4. An X 4 -pattern is said to be loo.!e if it can be reduced so that each edge adjacent

to a notch Vi is made to be collinear with either Ri or L; (16 configurations glwuld thus be

achievable ~ Fig.20).

The term "reduced" is to be understood here in the sense of Lemma 6. The introduction

of loose patternf\. finds justifica.tion ill the following.

LerrU11.8 16. Every ...:'(4,-pattern which is not reducible to an Xs-pattern or a Y/j-pattern can be

reduced to a. loose X4-pattern.

Proof: Let hull(T) designate the convex hull of all the points of an X-pattern T. It. is clear

that every X 4 -pattern, T, can be reduced to an Xol,-pattern V such that no further reduction

of V can lead to another X4,-paUern lying strictly inside hull(V), i.e. an X4,-pattern where at

least one notch lies strictly in the interior of hull(V). We show tha.t if T c a.I.l.D.ot be .educed to

a Y -pattern, V must be loose. Assume that one of the 16 configurations cannot be achieved for

V; by applying the reductions shown in Fig.21 we can reach aD Xa-pattern, a Y -pattern or an

x.a-pattern lying strictly in hull(V). Actually, another posBibility is to reduce to the alternate

case of Fig.21, which can arise only a finite number of times. iii
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X4-patterns can be assumed to be loose.

A loose X4-pattern with its 6 extreme configurations.

Figure 21

Figure 20

110

Figure 22 Characteristics of an X4-pattern
Fact 1.

Fact 2.

X4(*,Vi,
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seg:ments r.. is O.

Fact 2. For each Vi, the get of Ai Jr:'3 contain~ all possible N3-nodes a.djaceut to Vi in the loose

X4(", , 11i,*, *, "', *).

Fact 1. L (AikV;, AikVJ:,) < 180, and AikVi and AikVl\: intersect the bO'lUldary of P a.t Vi and Vk,

respectively_

111Optimal Convex Decompositions

Proof: This characterization is fairly straightforward. It is important to notice, however, that if

we consider the convex hull of the X 4 -pattern, a clockwise order of its fouf vertices corresponds

to a clockwise order of the notches on the bounda.ry of P. This topological fact will be useful

throughout. l!/

The fact that an X 4 -pattern with the configuration of Fig.22 is possible between Vi, Vj, Vic, V" A, B

will be expressed by the Dotatioll X4(V ... ,Vi,tJr,tJi,A, B). We win often use this notation with

nodes replaced hy * ill order to represent the set of all possible X",-patterns having the "'-cd

clements filled in. Next we introduce some operations to be added to the preprocessing at STEP

.i. Let Yi be the segment R(Vi, R;) and (a",b p ) be the pa.ir of SR(v;} such that al'bp intersect:'!

ri {recall that this pair has to be determined in order to compute R{Vi, R;) - see Lemma 11).

For an VI< between bp and Vi in clockwise order (including bp if it is a notch), compute Ai""

the int.ersection of ri and rIo if it exists. Note that the intersection ig uudefllied if one of the

Lemma 17. Let VJr:,Vi,VI,Uj be four notches in clockwiBe order around P, the tree in Fig.22

forms an X 4 -patte:m if and only if:

1. A and B are the only two intersections between edges.

2. Angle::; Lx, Ly, Lz, ix', IV', Lz' a.re < 180 degrees.

3. No edge of the tree intersects with the bOl.mdary of P (except at the notches).

Beca11se of this result we can assume that the X 4 -patterns com,idered in STEP 3 are loose

and collinear with the right ed.ge of each notch involved. More precisely, if S is an N3-node

adjacent. to Vi, the edge R; is collinear with SVi' From now on, all the X 4 -pattcrns considered

will be assumed to have this wnfiguration. Before addrellsing the ma.in problem, we give a

convenieut characterization of X4-patteros which we will be using throughout.
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Next for each Vi the points Ai/<; are sorted along ri and maintained in a sorted list. In the

following, "i will be viewed either as a geometric segment or as a list of sorted poiuts. The

data structure C"noseu for ri should allow comltant time access to Ai" as well as two-way scans

through the list "i (nse a linear a.rra.y for example). Note that the Ai" might not be defined for

all pairs (i, k). All the segments ri's CaIl be computed in O(n + e2 log n) time and setting up

their reOlpective lists can be done in 0 (c2 log c) operations.

To

Fact 4.

Fact 3.

We

alrearly

infinite

and A jl ).

pair (up,

the 1"Pllln,nH

f01" ,,,. ('!I m ,rjj

17.

B. Chazelle and D.P. Dobhin

E(i, j) is defined as the set of pairs (Ai'" Aid obtained for all di$tinct values of k with the

following properties:

1) X4( uk, Vi, VI, Vj, Ai.1<, Aid; 2) if an OeD contains a loose X 4 -pattern, X4(Vk, fl" ", Vj, *, *),

then there exists an oeD containing X4(Vk' Vi, VI, Vi, Aik' Aid, where (Ai"', Aid E E(i,j). This

allows the set E( i, j) to be used for our purposes without oyerlooking candida.te X 4 -patterns.

We next show that such sets can be fmmd satisfying this property and that each of them can

be compnted in O(e) time with the previous preprocessing.

We wish to apply the idea. of patching subtrees together to the construction of X 4 -patterns.

In the configuration of Fig.22, the edge vkA is to be patched with the rest of the pattern. To

generate X 4 -subtrecs we extend the notion of F and B functions. We intrvduce the set E( i, j)

to store all the information needed to decide, in constant time, if for a given Vir. there exists a

VI such that X4(VlbV;,V/,Vj,*,*). The set E(i,j) will be computed immediately after S(i,j).

To do so, we will consider ea.ch notch VI between v, and tJj and determine all t.he Uk that can

be patched t.o form an X 4 -pattern. Since for each VI we potentially ha.ve on the order of ~

notches of the form v", we must avoid going through each of them if our goal is to compute

E(i,j) in Ore) time. Fortunately f01" each Vj we cau express the corresponding set of Vk'S in

consta.nt space after constant time computing time. It rema.ins now to formalize the intuition

given above.

112

1. Computing E( i, j) two conveX):

Recall that E(i,j) is to be computed immediately a.fter S(i, j).

I) Sf'leding cllndidates on ri and ri

patteril

between
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We now retain in rj only the points A jl for which

18(£,i)1 = 18(i + l,l-I)1 + IS(l + 1,l -1)1·

113Optimal Convex Decompositions

II) Computing a region of safety

We compute the region of aafety for added edges in order to ensure Condition 3 of Lemma

17. Note that AtApB1Bq forms a convex quadrilateral (Facts 3,4). The next step is to compute

two convex chains C = {Cl,"" c.} and D = {d t , ... , Ii,} running from ri to rj and rj to ri,

respectively. These chains will have the property that a middle edge, (i.e. the edge of an X/il.­

pattern between the two N3-nodcs) from ri to rj lies totally in P if and only if it lies totally

between the two chains (Fig.21-a). luformally C (resp. D) is the convex hull of the pieces of

To begin with, we determine the points A ik such that Vk E V(i + 1, i - 1) (Dote that if the

pair (a p , bp ) of SR(Vi) used to compute ri is such that hp E VU,i), all the vertices in ri will

fl.lready satisfy this condition). Next we keep only the Ail\; which lie on the other side of the

infinite line passing through R j than the edge L j (repeat same operations with respect to rj

and Air). This ensures that:

Fact 4. Vi, Vz, Vj occur in clockwise order and I y < 180.

Fad 3. Vi, Vic, Vi occur in clockwise order and the angle Lz' < 180 (Fig.22).

By doing this we keep only the candidates for N3-nodes of an OCD. Similar to the Y­

subtrees occurring in B(i,J·), candidates must contribute a savings of IS(i,j)1 with respect to

the removal of reflex angles in V (i, i). Finally we update the lists r i and rj with the points just

choscn, maintaining the sorted order. We rellame the points of l"; (rcsp. rj) from v, (resp. Vj),

At, ... ,Al" (resp. B 1 , . •. , B q ). This entire step can be done in O(c) time with the preprocessing

indicated earlier. We now have a list of all possible N3-nades for candidate X 4 -paUerns. It

is clear that E{ i, j) can be found satisfyillg the specifications given above. Each Ai\; will be

paired with the point B, such that Ai< and Hi are the N3-nades of the same optimal X.j,-pattern

forming the maximum angle L(AkB"Akv;) (Fig.23). We mU3t now give a precise procedure

for accomplishing thifl task.

k with the

set E(i, j)

re exists a.

ist. In the

,ints. The

,-patterns.

'l.ttern. To

i, j). This

,-patterns.

them can

way scans

:lefined for

setting up

;er B(i,j).

< that can

order of c

) compute

of lI.\:'S in

~ intuition
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The limits on middle edged RR' and SS'.

Computing E(i,j),

v cd
j 1

Figure 24

Figure 23

114

Supplied by The British Library - "The world's knowledge"



Optimal Convex Decompositions 115

the boundary of P which pass through A1Bq (resp. ApEd. and delimits an area of safety for

potential middle edges. Actually, as we will see later on, this definition will apply to the part!!

of C and D inside the rpmdrilateral A1ApB1Bq. To preserve the flow of the presenta.tion, we

will prove the following result in the next section.

Lem:ma 18. The convex chains C and D can be computed in 0 (c) time after 0 (n + c2 log n)

time preprocessing.

If the procedure of Lemma 18 determines that any segment drawn between A1Ap and

B1Bq should intersect the boundary of P, it sets G or D to O. Otherwise, it effectively returns

two convex chains C and D, with the segment c1dt (resp. dIc .. ) containing Al a.nd A p (resp. B 1

and B q). Also, as stated earlier, a segment joining A1Ap and B1Bq will intersect the boundary

of P if and only if it intersects Cor D.

It takes 0 (c) operations to test whether C and D intersect since both have 0 (c) vertices.

If they do, no middle edge is possible and E( i, j) is set to O. Otherwise, we can compute RR'

and SS' a.s the limits put upon the middle edges by the polygon P (Fig.24). SS' is computed

by begiilllillg at Cl a.nd tIl and moving through D until 'all of D lies above the line pa.ssing

through dk C1, then moving through C Ulltil all of C lies below the line passing through elFl.

We iterate on this process until termination, which will occur after Ore) steps since no vertex

of C or D is visite-d more than once. Here is a more formal description of the procedure. RR'

is obta.ined in a similar manner.
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Figure 25

A
~P.4"'~---+-.

The function f.

(C)

B
q

Ill)

V
j

f\ r A" Bk q
g2(k)

Figure 26 The functions g1 and gZ"
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Cmnputing SS'

k:=l:=l

beg

begin k:=k+l end

begin 1:=1+ 1 end

end

S:= Cj; S':= die
------

Ill) Computing wedges for possible mic1c1le edges

117

We arc now in a. position to compute the wedges where middle edges must lie. We begin

by ohserving that any point in the li::;t r,- not in the wedge formed by RR' and S S' can be

discarded, whi<'h we can do ill O( c) time. For simplicity we still call A 1 , ... ,Ap the elem.;-nts

of the list rio

For every HI E rj (recall that B 1 = A ju for SOUle u) we defin.;- f(l) as the intersection of

the line supporting ri and the ray emanating from Dl , in the direction of R u , and llot passing

through Ru.. If this inter::;ection does not exist, we compare the direction of Ru. and ri to

decide if the "middle edge" wedge centered at Bl formed by the ray and. rj intersects the lille

S11pporting ri or not. If yes, we set J(l) = AI" else f{l) = 0 (Fig.25). Also, for ea.ch Ale E ri.

let A~ (resp. A~) df'note the point all the segment 1'j which is thp dosest to D j (re::;p. B q )

and. such that the segment AkA" (resp. AkA~) docs not strictly intersect D (resp. C), i.e. the

intersection consists of a segment or a single point. We now view rj as a list of vertices and we

find the two verticps B, (= !1j(k)) and. Em (= .92(k)) whirh lie OIl the segment AkA~ and arc

the closest, to A~ FInd A~, fC'spectively (Fig.26). If Br and B m do not exist, we define 91(k) and

Y2 (k) to bf? O. At this stage we need two results whmle proofs we postpone till the next secholl.
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Lemma 20. Let V = p, ... ,q} and W = {I, .. . ,p + q}, WI U W2 = W, IWII = q, W21 = p

and let j, gl, g2 be oefined with: f I V f-4 Wl a bijection and 91, g2 i W 'l 1-+ V non-deaeasing

functions, with :Jl(i) ~ :Jz(i) for each i E W2. Define x I W 2 1---+ V such that for each i E W 'l ,

Xli) is the smallest integer in V with 91(i) ::;: x(i) :::; 92(i) and i ~ f(x(i)) if such an integer

exists, amI 0 otherwise. If f, a1, g2 are computable in constant time, then so is x after O(p + q)

preprocessiug.

Lemma 19. After Ore) prepara.tion, the flIDctions f,gl,U2 can be evaluated in constant time.

We can tlIm set up the function x in O(c) time. The last step consist.s of keeping in E(i, j)

all the pairs (A""B:l(A.») such that z{Ak) i= 0, with Ale E ri and I(Akvu,AkB:l(A..,d < 180

(Ax = A;u). Note that X(Ak) is a shorthand for x(t), with t the element in W2 corresponding

to A/c. Recall that if any of the previous computations fails, we have E(i,j) = O. We can now

state our m2.in regult:

IV) Computin{; E( i, J)

Lemma 19 allows us to compute all the values of 1,91,92 in Ole) time. Note that if f(l) = []

no middle edge adjacent to HI is possible since it must lie in the wedge W (BrBq, B,j{l)).

Therefore we can eliminate those B r from rio Once aga.in we still represent the resulting list by

B l , ... , B q . Similarly, if gl (k) = Dz(k) = 0, A.I: cannot be an N3-node aud we eliminate all such

Ai(; from rio Note that the values of g1 and 92 should be compnted after the last selection on rj.

\Ve will mt.'rge the points f(l) with the remaining vertices Ak, thns forming t.he set W. Strictly

speaking, f maps l not to a point on ri but to the corresponding index in W. We can always

<J.ssume that f is injective. Next we define V as the set ofyertices left on rj; instead of mapping

to actual Vt'rtices of rj, the functions gl and 92 will map k to the corresponding indices in V.

Because of the removals, 91 and flz obey the two conditions of Lemma 20. Finally we define Wl

a;; t.he ~'ublist of W rorrespollJillg to the f(l) and W'l as the complfOm.-.nt in W, i.e. the indices

corresponding to the A1:. It is easy to see that all removals, merges, a.nd settings of fnni'tions

can be dOlle ill Ole) timt.'. Moreover all the conditions of Lemma 20 have been met.
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Lemma 21. After 0(1'1+ c 2 logn) preparation, E(i,j) can be evaluated in Ore) time.

119

1 •(,('creasIng

:h i E Wz ,

an integE'r

rO(p+q)

if f(l) = 0

q, Blf(l)).

lng list by

;e an such

.. Strictly

In always

mapping

Ices in V.

1e indices

functions

in E(i,j)

)) < 180

,ponding

can now

Proof: The preprocessing involves setting up the lists ri which, as seen earlier, requires 0(1'1 +

{;2 Jog I'll time. For any i and J', E(i, j) is then computed in O(e) operations. We review the

main phases of the procedure and establish its correctness. In the preprocessing stage, Fact

1 enSures that the angles Lx < 180 and Lx/ < 180, and that Condition 1 of Lemma 17 is

satisfied. Fa.cts 3 and 4 show that Ly < 180 and Lz t < 180. Then, considering the savings, hy

an argnment now standard, we eliminate the N3-nodes which are not candidates. Next we pair

Dy definition, x(Ai<) is the smallest integer in V (i.e. the vertex of rj that maximizes the

angle Iy) lying on the segment (gdic),a2(k)) (i.e. ensuring Condition 3 of Lemma 17), and

such that Ak lies on the segment AjF, with F the point Oil ri corresponding to f(x(A:c)), i.e.

ensuring Ly' < 180. Finally, since x(A:c) maximizes the angle Iy and L(y+z) is a constant

for all Dr, no vntex of rj can he paired with Aj\; if I z > 180. If Lz ::::: 180, all the conditions of

Lemma 17 are satisfied, and A ... Bz (AkJ can be kept as the middle edge candidate to be adjacent

to A k . Since we know that this edge is iudeed the middle edge of a loose X 4 -pattern. DIlly

savings cOllsidcration will la.ter decide whether this edge belongs to an OCD or not. This is, in

cs::;eDce. the only major difference with the Y-subtrees of B(i,j) and F(i,j), where both savings

;md geometry had to be tested at once in order to determine candidacy. II

2. The Proofs of the Lemmas Left Unresolved

We uow justify our earlier claims and successively show how to compnte the region of safety

,-mel get up the fnnctions !.gj.!l2,X. all in Ole) time.

Lemma 18. The convex chains C and D can be computed in O(c) time after O(n + c2 10g n)

tiIlle preprocessing.

Proof: C and D are computed III the same manner, so we may concentrate on C exclusively.

\Ve assume that all the superranges have been precomputed, which requires O(n + c2 log 1'1)

time, t\S was shown in Lemma. 10. Let (ap , bp ) be the pair of SR{vj) such that the segment. u,pb p

intersects rj. Rerail that this pair is uniquely defined and must be computed ill order to ohtain
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rj. If ap is a. notch jet tv be ap • otherwise let w be the notch of P next to aI" counterclockwise.

\Ve may always assume that adequate preprocessing allows us to determine w in constaIlt time,

given ap' If Vi lies between UJ and vJ' in clockwise order, we simply deHne C as vjBq (Fig.27-c).

Oth"rwise things are somewhat more complex, alld before describing an algorithm formally we

will give an overview of the method.

Let L be the line collinear with the edge of C adjacent to Vi (i.e. the first edge of C

counterclockwise). L will essentially wrap around the obstacles created hy the bOUlldary of

P in a counterclockwise motion (Fig.27-d). Let V be the polygonal lille on the botmdary of

P between Vi and w in clockwise order. We will show that all the obstacles (which are the

vertices of G) are notches of V. Consequently we can expect to wrap around C entirely in 0 (c)

operations if L can pivot around each vertex of C in constant time on the avera.ge.

Let x be a vertex of G with £1 (resp. L:;) designating the line L before (resp. after)

pivoting around x (Fig.27-d). We first locate L 1 in the superra..'1ge of x, then we scan SR(x)

cOllnterclockwise, until we hit a vertex bk which lies all V. We can show that in general b~ is

also the next vertex of C. Recall that locflting £ in SR(;;;) involves finrling the pair (tLj, bj ) such

that L intersects aj~j. To ensure an Ole) running time, we cannot actua.lly Jocate L 1 in SR,(x).

Instead we determine a notch y nearhy which will serve the same purpose. This notch is to he

determined at the time when L 1 is computed. Thus we define the function NEXT which maps

(x,y) to (ak'bJ.,). More generally, NEXT maps any pair of notches X,l! (x E V) to the pair

(ak. bi<) of SR(x), computed as follows:

1. Find the two pairs (aj, hj ) and (aj+l' bj+I! of SR(x) such that lJ lies between hj a.nd aj+l

in clockwise order.

2. Scan the pairs ofSR(x) cOlmterclockwise, starting at (aj,b j ) (i.e. (aj,bj),(aj-l,bj_d, ... )

and determine the pa.ir (ak, b"J such that h is a notch of V and ak+1 lies outside of V. If

we fail to find such a pair. return. (0)_

3. \Vhcu NEXT is eValuated and a pair (ab b,J i:3 actually returned, the function sets a global

va.riable enext to ak+1 if it is a notch, else the notch of P next to a,,+l, counterclockwise

(Fig.27-d).
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We first show that the fWlCtioil NEXT is well-defined and can be evaluated in time propor­

tional to the number of pairs sCalllled in step 2. Recall that in any superra:nge SR(x), the pairs

(ai' bi ) realize a partition of the set of all notches, and more precisely any notch y lies betwccn

0i and ai+l in clockwise order for some f· Thus, once SR(x) has been computed, we can cxtend

the preprocessing to assign each notch of P to each corresponding pair bi , (Li+l. A simple Rcan

throu~h the notches of P will do it in O{ c) time. Finally, noticin~ that we can test if a. notch

lies in V in comtant time, and that cnezt is also found in constant time, for the reasons seell

above, we a<:'hievc our dailas. We a.re now ready to set out the algorithm for computing C.

Let alb! be the segment intersecting ri with (ai, bd in SR(v;) and let t be the notch next to a/

countcrclockwi8e. Ll't 1 he the intersection ri nri if it is defined, or the endpoint of ri (f vi)

othcrwi8e.

Computing G

if Vi lies between w and Vi

then return (C = {Vi,!, B q })

C:={Vi}, d:= Vi, e:= NEXT (Vi, t)

while e l' 0

begin

if L(dflq,de) < 180

then return (G:= CU{Bq })

d:= e

C:= GU{d}

e:= NEXT (e,cnext)

end

return (C:= OJ

To see tha.t the algorithm runs in Ole) time, it suffices to note that the notch cnezt moves

counterclockwise on the bQuudary of P, so O( c) pairs (ai, hi) will be examined in all the

superranges considered by the ftmction NEXT.
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v.
J..

d)

c)

(Figure 27 ... / ... )
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Figure 27 Computing the chains C and D.
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We next show how a middle edge intersects the boundary of P if and only if it intersects C

or D. In order to co=cct ri and rj via a middle edge, the intet·sectiou of P and the quadrilateral

.A
1

B
q

B
1
A

q
must contain a polygon 8 with edges AlAi' and B 1 B q . Note that this interspctioll

m.ay actually consist of several polygons. The boundary of S consists of these two segments

joined by two polygonal lines, 8 1 and 8 2 . 8 1 has all its vertices in V and 82 in V!, where V' is

defined as V. switching the roles of Vi and Vj (Fig.27-h).

To avoid computing 8 1 aud 8 2 explicitly (they may have on the order of n vertices), we

first notice that llO middle edge c an intersect the convex hull of 8 1 without intNsecting S l'

The same observation on 8 2 leads to computing the convex hulls C 1 and C2. respectively. For

convellicnc('. we call replacf' the vertex .41 in 81 (resp. B 1 ill 8 2 ) hy Vi (resp. Vi) and still

pre~wrve the initial property that a middle edge lies totally in P if and only iflt docs not strictly

cross C or D. We now turn to the actual computation of c: and D.

The first case considered 83sumes that Vi lies between w and V; in clockwise ordl'r. 5 is

then reduced to the single intersection poiut of ri and rj and S can be set to u,-Bq (Fig.27-c).

Note tlnt we em always assulIle that in this case r,- and rj intersect. otherwise the lists ri and

rj would be empty. If Vi does I10t lie between w and Vj, V is not empty, and we will prove by

induction that C is actually the convex hull of 51 or a if no middle edge is possihle. Fig.27-e

illustrates the compntation of the next edge of C. To ensure convexity, all of 8 1 must lie on the

same side of the line passing through this edge. Therefore the next vertex of C after the vertex

labelled e ill Fig.27-e-I) mmt be the point x of V, visihle from bk, which minimizes the angle

I(eak+i.ex). bit and a"+l are the vertices in SR(d) returned by the IJrevious call on NEXT.

Sine!? the endpoints of V are notche8 of P, x must be one of the vertices listed in SR(e)

bl'twel'lI whi,h a"'+l lies, so we must. start. scanning SR(e). We only have to perform a CQnnter­

clockwi~w scall since, by induction hypothesis, a,,+l does not lie in V, therefore the uext vertex

of C mu"t be some a, or DJ in SR( c) for l :s: j. Once again, the crux is that a counterdockwise

scan in SR(e) corresponds both to a counterclockwise scan through the vertices of P and a

couuterrJockwisl' angular sweep. Note tha.t ao\:+1 is a point of SR(d) which has to be loca.ted in

SR(e). Since (ik+l is not a notch in general this operation seems too complex.
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lrilateral

'rsection

egments

ere V'is

cCes), we

ting 51,

,ely. For

ami still

: strictly

er. S is

ig.27-c).

:13 r; and

)l"Ove by

Fig.27-e

e on the

e vertex

at' angle

mXT.

n SR(c)

counter-

.t vertex

lockwise

P and a

cated in

Instead we CaIl End the pair bi , ai+ 1 of SR(e) between which cnext lie!! (recall that cnext

is thp first notch after ak+l in a counteT'clockwi~le scan through the bmmdary of Pl. Since

cnezt is a notch, this operation can be done in constant time. Thug the function NEXT will

retUr"ll the next vertex of C:. Note that jf the point determined by NEXT is not a notch, NEXT

retun.lS O. Indeed, this point could not he the next vertex of C and the 3,ctnalllext vertex !I

would not be visible from e. Conseqnently, C would intersect 52 and liO middle cd~e would

thf'll possible (Fig.27·f). We observe that if C is well-defmed, there exi!lt!l l !l11ch that B q lies

in the wedge W(C'-lC!. C'C'l+d (Fig.27-g). Thns the algorithm terminates by substituting B q

for 0 1+1 ,0,+2,'" and tbe remaining vertices of C; this is leg-itimatc since this last portion of

C cannot have ,my effect on middle edges~ I

Lemma 19. III O(c) time, it is possible to precompute the fUIlctions !,gl,g2 so that any

evaluation can he done in COIl"tant time.

Proof: fU) CaIl he evaluated directly ill COllsta.nt time by intersecting the line passing through r.

with the ray emanatill~ from E I , collinear with flu, yet not passing through R... with B! = Aj....

If there is no intersection, f(l) = O. Next we show how to compute all the values of gl and

g2 in O(c) time. We start by computing the intersection of ri with all the lines (((~dk+d for

consecutive values of k. These points partition r .. into segments, and the previous computation

provides a sorted list of their endpoints in O(c) time. To each of these segments corresponds a

Ullique verkx of D. Then, for each Ai, ... , A p in turn, we find the segment where A k lie". Let

dm be the corresponding vertex of D. We compute A~ by intersecting rj with the line passing

through Akdm (Fig.28). This also gives us a sorted list of the points AL since D is convex.

Finally we can merge the A~ and B 1 in O(e) time, and in one scan through the list, find for

each A~ the nearest B: on the same side as B'l' We then set ad k) to 1. We iterate on thi:"

process with respect to C, defining gz (k) for each A .. on t"i· Finally, for each Ale, we check tha.t

gdk) S gz(k). If this is not the case, we set 91(kj and Uz(k) to O. All of thi3 work clearly

requires Ole) time. 111
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Figure 29 The setting of the function x.
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preprocessing.

Lemma 20. Let V = {l, ... ,q} and W = {l, ... ,p+q}, W 1 UW2 = W, IW1 1 = q, IW2 1 = P

and let j, [h. g2 be defined with: f i V >--> WI a bijection and {ll, 92 I W'2 r-t V non-decreasing

ftmetions, with 1di) S; 12(i) for each i E 'W2· Define x W 2 f-+ V such that for each i E W 2,

xli) is the smallest integer in V with 91(i) ~ xli) ~ 9Z(i) alld i S; f(x(i)) if such an integer

exists, and 0 otherwise. If I, gl J g2 arc computable in COllstallt time, then so is x after O(p + q)

127Optimal Convex Decompositions

Proof: Note that the naive method for computing all the values of x runs in O{pq) time.

We preSi'llt a...'l O(p + q) time algorithm for a.chieving all these computations and establish its

corre<;tness. Let Y1, ...• lip be the elements of W 2 in increasing order (1 ~ lIj ~ P + q). First

of all, we consider the set of y E W2 such that {l1(Y) S; i S; 92(Y) for a given i between 1

and q, and observe that it is a contiguous (possibly empty) subset of W2 since gl and fJ2 are

non-decreasing. We compute the largest and smallest y, denoted Yh. and 1It; respectively, as

follows (if there is no such tI, we set (t., hd to 0).

Initialize an array A (2 x q) to O.

for i = 1, ... ,p

begin

At l , 91 (Y')]:= All, 91 (y;:)] + 1

A[2, gz(y';)]:= A!2, 02(Y;)]+ 1

end

l:= 1; h:= 0

for i = 1, ... ,q

begin

h:= h+A[l,i]

if 1 S; h

then (ii, h;):= {l, h)

else (ti, h.):= 0

1:= l+A[2,i]

end
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Initialize all x(i) to a for all i = l, ... ,q

l-..1:= 0

We are now ready to set up the f,metion x by computing all its vah1es. If !lI. ~ /(1) ~ !lh.,

aU Xli) with i between !III and 1(l) must be set to 1. Now if Yh ~ y,,-, ~ 1(1), all x(i) with i

betwecll Yl t Cllld Yh. must be set to 1. In both cases, no other i ill W should have xCi) equal

to 1. Then we can carry out the same reasollin~ with 2, assigliing" thi" value only to the xli)

which have not been s.... t yet. Since, as i increases from 1 to q, li and hi -callllOt decrease or pass

each other (UIlless (ii. h;) = 0) a possible implementation is:

for i = 1, ... , q

begin

a:= max(YI" M)

b:= min(f(i), lIh;)

if a ~ b and (ii, hd i= 0

then

for J = Il, ... ,b

begin ZU):= i end

i\f:= b + 1

B. Chazelle and D.P. Dobkin

The algorithm dearly achieves a time bound of O(p + q). To establish its corredues!:!, we

observe that th.. first loop sets A[L)'] to the number of 11 in W2 such that J' = g1(Y), i,e. the

numlJer of intervals [gdY),!J2 (Y)l, ;;tarting at j. Similarly, A[2, jj counts the number of interval!:!

filii gLing at j. Thcn ;;iuce, as i inCTeases, 9'1 (Y;) and g2 {Y.) C<1.=ot decre<',.se or pa;;s each other,

we can derive (Ii.h i from (li-l,h i - 1 ) by counting the number of intervals which have to be

added and remov"d. More precisely, the difference hi - hi - 1 is exactly the number of !I inW2

such that i-I < g1 (y) ~ i, which is equivalent to 91 (y) = i and shows that this number is

All, i]. Likewise, if i-I < g2(YI,-t) we have Ii = [i-1. Else if (J2(Yi._ t ) = i-I, Ii ~ [i-l is the

number of !I such that 92(Y) = i-I, i.e. A[2,i] (see exa.mple in Fig.2D).

128

end Main
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which is easily shown to be also O(n + e~'T

- Step 2: O(e3 )

Step 3: O(e 3
)

- Step 4: O(c 3
)

- Step 5: O(n + e2 1ogn)

- Preprocessing: 0 (n + e3 + c2 log n)

Main Theorem. It is possible to compute an optima.l convex decomposition of a simple

The total running time of the decomposition algorithm is therefore O(n + c3 + c2 log n),

Note that we investig-ate the two possible topologies of an X4-patteru. lying in V (i, j) and

maximum (with reRpect to cardinality) of M and

Initialize }"f as the empty set.

We a.re now prepared to use the information contained in E(ci, j) to produce an OeD. ECi, j)

For each Uk E V(i + 1, j - 2) surh that Elk,j) contains a pair (Aki, Bid, aSflign to lvI the

Note that if i belongs to W 1 , the value 3ssigued to x(i) is meaningless. The algorithm nms

For each Uk E V(i + 2,j - 1) such that E(i, k) contains a pair (Aij, Bled, assign to]vf the

polygon with n vertices and c reflex angles in time O(n + C
S

).

Lemma. 21, we know that the additional preprocessing requires O(n + c2 10g n} time. We are

adjacent to Vi and Vj (Fig.30). The procedure for computin~ M requires O(c) time and, from

now ready to evalua.te the complexity of ea.ch step of the decompositiol.l algorithm:

maximum (with respect to cardinality) of ~\1 and

may be computed in STEP 4 of the algorithm ConvDec, with the additional preprocessing

described earlier. We can now replace the former computation of 1\11 in STEP 3 by the following:

3. The Cubic AlgorithIll

mime O(p + q), which compldes the proof. II

or pass

) with i

mber is

i.e. the

the Xli)

le to be

i) equal

lltefvab

h other,

1 is the

:less, we

) <
j - Yh"
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promise.

Figure 30 Computing B with the topologies of X4-pattern

of corrve:~l
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We should note that in S(i, i - 1) the algorithm provides us with c optimal, yet not aH

llecessarily idcutical, decompositions.

5. Concluding Remarks

The main result of this paper is a.n a.lgorithm for decomposing a polygon into a minimum

number of convex parts. The algorithm is linear in the number of vertices and cubic in the

number of reflex angles. From a theoretical viewpoint, our main achievement has been to show

that the decomposition problem was polynomial, even when Steiner points are allowed in the

decomposition. Also one merit of our a.lgorithm is to ha.ve its complexity expressed in the form

O{n + f(~)). This is to our knowledge the only decompositioll algorithm with this property;

one interesting open problem is to decide whether the preprocessing used ill our algorithm can

be applied to the algorithms known for the ca.se where no Steiner points are allowed in the

decomposition. Indeed, Greene's O(n2 c2 ) and Keil's (c 2 n log n) methods for this problem a.re

less efficient than our algorithm.

On the pra.ctical side, the complexity of our a.lgorithm might be acceptable, given the near-

convexity of most polygons in practice. Unfortunately the algorithm seems inherently intricate

and implementing it in its most elaborate form is certainly a. formidable ta.sk. We might be

willing, however, to sacrifice a. little efficiency in order to achieve greater simplicity. Computing

only X 2 -patterns and doing away with :mperranges may often be found an acceptable com-

promise. Even the naive decomposition, when implemented efficiently, may turn out the best

alternative if we can afford to miss an optimal solution by at worst a. factor of two in the number

of convex parts.

Of course, only the cubic algorithm reveals the genuine "beauty" of the problem. Its long

development involves many subproblems, most of which are interesting in their own right (we

believe). For example the concept of superranges might provide an effective means of dealiug

with visibility problems and its fast computation (O( ~ log n)) makes it very appealing. This

can be viewed as a. first step towards adapting non-convexity to algorithms for convex designs.
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