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CPTIMAL CONVEX DECOMPOSITIONS

by

Bernard Chazelle and David P. Dobkin

Abstract:

The problem of decomposing a non-convex simple polygon into a minimuim number of
convex polygons is solved. The decomposition allows for the introduction of Steiner points.
Two algorithms are proposed. The first verifies that the problem is doable in polynomial time.
The second provides an efficient method. Along the way, numerous results of independent

interest in pure geometry as weil as geometric complexity are stated.

i. Introduction

The problem of decomposing a simple polygon into its basic components has been a recur-
rent theme in computational geometry. Interest in this problem comes from its central location

in the study of object representation. In the same way that English words benefit “greatly”
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64 B. Chazelle ard D.P, Dobdkin

from their expressibility in a 26-letter alphabet, complex geometric structures are more easily
handied when decomposed inito simpler structures. Think of tool designers pressed for simple,
modular designs, for instance. Another good example is the rccognition of Chinese characters
by matching text data against building blocks, as described in [8]. This operation involves the
decomposition of polygonal shapes into convex pieces. For further motivation on decomposition
problems, see [8.0,.18,20]. The problem we consider is:

Given a simple polygon P, what is the minimum number of convex polygons which form
a partition of I 7

This is cailed the OCD problem {for “optimal convex decomposition”). We will briefly
review the known results. The first breakthrough on the OCD problemn appeared in the pro-
ceedings of the 1979 STOC Symp. {5]. There, these authors proved that the probiem was poly-
nomial, thereby frustrating widespread suspicion that it was NP-hard. Iaterestingly enough,
this finding was followed by a stream of NP-hardness results for similar problems [12—17]. For
example, it was shown by Lingas that the presence of Loles in the polygon P was sufficieat to

make the OCD problem NP-hard [14].

Variants of the OCD problem were considered in [12,18], where the requirement was made
that no ncw vertices should be introduced ia the partition of P. In [15,18] the objective function
to minimize was no longer the mumnber of pieces but the total edge-length. For other work,
cousult [1,3,4,8,0.14,18]. Followiug the criginal paper of Chazelle and Dobkin [5], the OCD
probiem was thoroughly treated in the former author’s PhD thesis [3], where an O{n+ ¢%) time
decomposition algorithm was presented (r is the number of vertices of P and ¢ is the number
of reflex angles). This result represents a quantitative {but not gualitative} improvement over
the O(n®} time algorithiz of [5]. Of course it can be argued that for small values of ¢, the
algorithm in [3] is linear or quasi-linear. Unfortunately this statement must be tempered by
the rather intricate nature of the algorithm, which makes it an unlikely candidate for efficient

impiementation.

The purpose of this paper is to present the main ideas of the algorithms in [5] and [3].
We recognize that the interest of our resuits is primarily theoretical, so we will devote most of

our effort to proving that the OCD problem is polynomial. The rest of the paper will outline
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Optimal Corvex Decompositions 85

the most imteresting points of the O(rn + ¢*) time algorithm, referring to [3] for details and
complementary information. The paper will be organized as follows: in this section, we zive a
brief overview of our method. In the next section, we present the basic geometric facts for the

study of the OCD problem. In Section 3, we consider the algorithmic aspect of the problem and

describe the polynomial algorithm for the OCD problem. In the following section, we address
implementation issues and outline uew lines of attack to speed up the algorithm. Finally we

sive conclusions and outiine directions for further research in Section 5.

One methodological note is in order. Given the intricacy of our O(n-+¢®) algorithm for the

OCD problem, the presentation will follow a top-down approach. We present the maln ideas
p 7 i

of the method first, and then fiil in the blanks left. Our rationale is to separate the esscntial

compouents of the algorithm and the parts which only contribute to iis efficiency.

Two simple facts bound all algorithms for this problem. First, each notch {i.e. vertex
displaying a reflex angle} can be removed by the addition of a polygon to the decomposition.
Second, at most two notches can be removed through the addition of a single polygon. Hence,
the minimum number of convex parts always lies between [¢/2] + 1 and ¢ + 1. To extend
these simple observations, however, is a difficult mathematical problem. To form minimal
decompesitions additional {Steiner) points must be introduced as vertices of newly generated
polyzoas. This removes the obvious finiteness of the problem and makes simple enumerative
procedures impossible. Furthermore the problem cannot be treated in a local manuer. These

observations led to the conjecture that the problem was NP-hard.

To circumvent these difficulties, we latroduce X-patterns, from which minimal decompo-
sitions can be generated. An Xi-pattern is a particular interconnection of & notches which
removes ali reflex angles at the & notches and creates no new notches. A decomposition ob-
tained by applying p patterns of type X,,, ..., X;, aiong with straight-line segments to remove
the remaining notches can be shown to yield ¢ + 1 — p convex parts. Clearly, decompositions
with the most X-patierns also minimize the number of coavex polygons. This can be viewed as
a generalized matching problem which might lend itseif to a dynamic programming approach.

Simple examination shows that there is exactly one tvpe of each Xj-pattern for £ = 2,3, Were
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Figure 1 The naive decomposition and an improvement.
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Optimal Convex Decompositions 67

this the case for larger &, a polynomial-time algorithm based upon X-patterns would be pos-
sible. lnfortunately, determining whetuer a given set of notches can be interconnected via an

X-pattern appears tao involved to handie directly.

One solution Is to constrain X-patterus in such a way that thelir detection becomes tractable.
This leads to the introduction of ¥-patterns, which we can regard as X-patterns endowed with
some structural property. We show that with the exception of Xy-patterns any X-pattern can
be advantageously replaced by a ¥V -pattern. Since Y -patierns can be constructed in polynomisl
time via dynaiic prog‘ramméng, we can achieve our first goal, which is to show that the OCD
problem is in 2. As is shown later on, further geometric analysis leads to substantial gains in

the eficiency of the original aigorithm.

2. The Geometric Ingredients

In this section, we introduce our notation and show that the OCD problem can be re-
duced to a form of generalized matching problem. Let P be a simple polygor with n vertices,
Pi,.. -1 Pn, in clockwise order. As previously mentioned, the vertices of P which display a re-
flex angle, called notches, will play a crucial role in the following. Let v;,...,v,, be the list
of notches iIn P, given in clockwise order. Throughout this paper, we will use the following
convention on the representation of angles. Let ab and ac be two non-collinear line segiments.
£(ab,ac) denotes the angle between 0 and 360 degrees swept by a counterclockwise rotation

from abd to ae.

A decomposition of P is a set of polygons, Py, ..., P;, whose union gives P, and such that
the intersection of any two if non-empty consists totally of edges and vertices. A decomposition
is sald to be convez if all its polygons are convex. We define an optimal convez decompoaition

of P, or OCD for short, as any convex decomposition of minimum cardinality.

We define the naive decomposiiion of P as the set of polygons cbtained by removing each
notch in turn by means of a simple line segment neively drawn from the notch. To be more
precise, a naive decomposition of P is obtained by going through each notch vy, ..., v, in turn,

extending a line segment from v; until we first hit another line already in the decomposition.
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Optimal Convex Decompositions 60

Of course. the extended line should remove the reflex angle at v;. Note that in this way we
wiil also guarantee that all lines drawn always lie entirely inside P. To simplify the easuing
analysis, we wili ensure that the degree of cach vertex in the decomposition does not exceed 3
and that no segment in the nalve decomposition connects two notches. These conditions are
trivially always satisfiable. Figure 1 illustrates the notion of maive decomposition and shows in

particular that it is not always minimal. We have the following {trivial) resuit.

Lemma 1. Any naive decomposition of P produces exactly ¢ -+ 1 convex parts.

Next we wish to characterize a convenient class of decompositions to which we wiil restrict
our attention in the following. We say that = polygon is intertor to P if it lies inside £ and at

most a finite number of its points lie on the boundary of P.

Diefinition 1. An X-decomposition is any convex decomposition containing no interior polygons
and such that no vertex is of degree greater than 3, except for the notches, which may be of
degree at most 4.

-4

Lemma 2. The class of X-decompositions always contains an QCD.

Proof: Consider an OCD which is not an X-decomposition. We transform its edges to yield an
X-decomposition. First, we show how to satisfy the degree requirements. Since this process
may introchce interior polygons, we show how to remove interior polygons without increasing

the degree of any vertex.

1. We regard the decomposition as a planar graph consisting of boundary edges and added
edges {an edge 1s said fo be added if it does not lie ou the boundary of P). Let x be a notch
of degree greater than 4 and yi,...,9m {m > 4) be its adjacent vertices, with yy,y-» €
boundary of £. It is trivial to show that there exists ¢ > 2 such that Z{zy;+1,zyi—;} < 180
{Fig.2-a). We can then move zy; along zy,—1 or zy;+1 to form a new segment \:;:'y.v with =’
chosen close enough to z so as to preserve convexity. We iterate on this process until the

notch z becomes of degree 4. The other cases to consider are depicted in Fig.2-b c. In case

b} the vertex z is not a motch but still lies on the boundary of P (it may or may not be =
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Optimal Corvex Decompositions 71

vertex of P). In case ¢) = is a vertex of degree > 3 which does not lie on tue boundary of

P. The same method used in case a) will reduce the degrees accordingly.

2. Consider the subgraph H formed by the added edges of the OCD uander consideration.
Pick an interior polygon of the OCD and let & be the connected component in A to which

the edges of this polyzon belong (Fig.2-d). Let ay,...,ax denote the vertices of &G (in

clockwise order) on the boundary of £ aud let K be the graph obtained by removiag &
from the graph of the OCD. Since G lies ia P and is a connected component of H, it lies
entirely in one face of X, denoted §). We observe that all the a;’s lie on the boundary
of ). Since & is connected, 1t detcrmines at least & faces in A, aside from the interior
polyzon(s). This shows that the OCD has at least & + 1 faces in @. The polygon @ may
ot be convex, but since we had a convex decomposition of P before removing @, all the
notches of @ must be notches of P, i.e. must be some of the g;’s. Now, instead of keeping
the convex decomposition of Q induced by the OCD, we apply the naive decomposition to
it. This will vield at most £+ 1 polygons {exactly & + 1, actually, since we are dealing with
an OCD, and consequentiy no transformation can émprove the decomposition). Since the
boundary of each of the created polygons contains at least one of the points a; as a vertex,
and each a; belongs to at most two polygons, none of these polygons can be interior to
P. Furthermore it foliows from the definiticn of the naive decomposition that the desired
degree constraints wiil be preserved. Iterating on this process for each of the remaining

interior polygous completes the proof. g

We arc now ready to introduce the important notion of X-patiern. Once again we regard
the added edges of an X-decomposition as forming a subgraph of the total decomposition. From
the definition of X-decompositions, it follows that the subgraph is a forest of trees with each
node having degree 1 or 8 except for the notches which may have degree 1 or 2. We will pay

special attention to those trees where all vertices of degree 1 or 2 are notches of P.

Definition 2. A planar embedding of a iree lying 1aside P is called an X-pattern if it is mot

self-intersecting aud:
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72 B. Chazelle and D.P. Dobkin

1. All vertices are of degree 1, 2 or 3.
2. Amny vertex of degree § or 2 colucides with a notch of P, and its (I or 2} adjacent edges

remove its reflex angle.

3. None of the 3 angles around any veriex of degree 3 is refiex.

An X-pattern with & vertices of degree 1 or 2 is called an Xj-pattern. Vertices of dezree
1,2,3 are called N1, N2, N3-nodes, respectively. For simplicity we refer to the vertices of degree
1 or 2 as the notches of the X-pattern. Imformally, an Xji-pattern is an interconnection of &
notches used to remove them while introducing £ — 1 additional poiygons into the decomposition.
Figure 3 gives an example of an X-decomposition with one Xj-pattern and one Xy4-pattern.

We justify the introduction of X-patterns with the following observation.

Lemma 8. Aun X-decomposition with p X-paiterns has at least ¢ + 1 — p convex parts.

Proof: Let S, ¢, % be respectively the number of polygons, trees, and tree-vertices lying on the

boundary of P. We prove the relation

S=k—-t+1 (1

[
e

by induction on :. The case t = 1 is trivial, so we may assume that the introduction of t — 1
trees involves &; vertices on the boundary of P and creates §; = &) — {t — 1} + I polygons.
{ntrodvcing the last tree into the decomposition will account for exactly & — &; — 1 additional
polygoans, leading to a total of § = 8§ + & — &k, — 1 = & — t + 1 polygons aud proving (1}.
Each of the £ — p trees whick are not X-patterns has at least one distinet vertex which lies on
the boundary of £ and is not a notch. This implies that £ — p € &k — ¢, which alongside {1)

cstablishes the lemma. g

Lemma 3 suggests that using p X-patterns saves at most p polygons over the naive decom-
position. This leads to the definition of compatible X-paiterns. A set of X-patteras is said o
be compatible, if no palr of edges taken from two distinct patteras intersect. For example, the
X-patterns in any X-decomposition always form a compatible set. Conversely, we can show
that any set of compatible X-patterns can be used $0o produce a decomposition. The following

result 18 complementary to Lemma 3.
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Optimal Convex Decomipositions 73

Lemma 4. Any coinpatible set of p X-patterns can be used to produce an X-decomposition

with exactly ¢ + 1 — p convex parts.

Proof: Start the decomposition with the p X-patterns. This will produce a certain number of
polygons. If any of them is not convex, apply the naive decomposition to it. Straightforward

analysis shows that the final number of polygons will be exactly e +1—p. &

from Lemmas 2, 3 and 4, we are able to express the original OCD preblem as a generalized

matching problem.

Lemma 5. Let p be the maximum number of compatibie X-patterns. An OCD can be obtained
by first applying the p X-patterns and then applying the naive decomposition to any remaining

non-convex polygon.

Since any X-pattern has at least two notches, the previous resuli shows that an OCD
consists of at least 1+ [¢/2] polygons. Lemia 5 suggests a new line of attack for the problem
at hand —the sufficiency of computing a maximum set of compatible X-patterns. Unfortunately
to do so seems beyond reach, given the excessive number of candidates we might have to coasider
in the process. X-patterns allow Steiner points (i.e. vertices not on the boundary of P) to be
adjacent. Looking at any X-pattera as a mechanical system of extendible arms and joints, this
corresponds to a system which is not strongly constrained. We show next that X-patterns can
be in general reduced to maximally constrained X-patterns, called Y-patierns. The next step
will be to prove that Y-patterus (being maximally constrained) can be computed in polynomial

time. A rigorous definition of these notions is now in order.

Definition 3. A Y;-pattern i3 an Xz-pattern suck that
1. mno edge joins $wo nodes of type N3.

2. in any path containinz three consecutive nodes of respective type N2,N3,N2, the N2-nodes

lie on opposite sides, i.e. the two pairs of edges of P which emanate from the N2-nodes lie

on opposite side of the path.
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Optimal Convex Decompositions 75

We will use a special representation for N1, N2 and N3-nodes {Fig.4-a). Note that the
N3 nodes of a Y-pattern are its Steiner points. A Yz-pattern and its representation are given
in Fig.4-b. To help visualize Condition 2, observe that if the two N2-nodes were pointing

downward, we would not have a ¥ -pattern.

We next show that all Xg-patterns {k £ 4) caa be transformed into ¥-patterns. This allows
us to limit attention to X-decompositicns with caly ¥ and X;-patterns. The transformations,
called reductions, involve the stretching, shrinking, and rotating of lines in the original pattern.
Reductions involve sequences of steps with each step translating an N3-node from one point to
another. All edges in the pattern except for the three edges adjacent to the N3-node remain
fixed. Reductions stop before an angle in the pattern becomes refiex or au edge in the pattern
strictly intersects an edge on the boundary of . During a reduction, a tree remains an X-
pattern. It may however gain or lose vertices in the process. For example, Figure § shows the

reduction of an Xs-pattern, which might correspond io one step in the reduction of a more

complex X-pattern.

In Figure 5, we see how an Xi-pattern may be reduced to an X;-pattern (I < &). The final
tree is still an Xa-pattern; it can also be viewed as an Xa-pattern augmented with a segment
provided by thf: naive decomposition. The X3-pattern loses a notch thereby being reduced to
an Xsp-pattern. This is legitimate since from lemma 5 we know that numbers {rather than
types} of compatible X—psttems maiter. In Fig.5, observe that the notches g and ¥ cannot
possibly be interconnected by an Xz-pattern in any X-decomposition. However, it is true that
an OCD can be obtained by considering the Xz-pattern as the single element of a maximal set
of compatible X-patterns. In this regard, the Xs-pattern is of interest to us. If X-patterns
can lose notches, they can also zain some, as ;uiil be soon shown. This should not surprise us,
however, since the previous idea of applying X-patterns and then completing the process with
the naive decomposition may also augment the X-patterns with additional edges {while not

increasing the number of patterns).

Lemma 8. In an X-decomposition, any X-pattern which is not reducible to an X4-pattern

can be reduced to a Y -pattern.
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Proof: Before describing the appropriate sequence of reductions which will turn X-patterns
into ¥ -patterns, we must ensure that reductions can be carried out freely without merging two
patterns in the process, which might increase the number of polygons in the decomposition.
If a reduction brings an cdge of an X-pattern in contact with any edge of the decomposition
not on the boundary of P a reflex angle will have neccssarily resulied beforehand. Since the
definition of a reduction precludes intersections with the boundary and reflex angies, this case

will not occur.

We are now ready to describe the reductions of undesirable X-patterns. We first ensure

condition 1 of Definition 3.

Condition 1.

Figure 6-1} lilustrates the sequence of actions. As indicated, we asswne that the pattern
is not of type X4 but has two N3-nodes adiacent to each other. Recall the notation for node
types in Fig.4. We move one of the N3-nodes by translation in the direction indicated by the
arrow. The translation confinues until either an N2-node results from intersection with the
boundary or we fall into one of the “extreme” instances depicted in Fig.7. Assume for the time
being that we are in the first case. If the N2-node occurs between the N3-nodes {case 1} we are
done. Otherwise {case 2}, another reduction leads to 2.1}, 2.2} or 2.3). We then iterate on this
process uatil mo pair of N3-uodes are adjacent (the label STOP is meant to indicate that the
current reduction step is over and that we should check again if more reductions are necessary).

Convergence is guaranteed since each step adds a distinet N2-node.

Note that the figure investigates all cases except for those representing extreme instances
of X-patterns. These extreme cases are illustrated in Fig.7. Case 2 is to be understood as
representing two edges emanating from the same notch, one of which is sufficient to remove
the reflex angle. To handle all four cases, we observe that in each of them we can prine one
edge from the pattern along with the adjoining subtree and still preserve the noun-reflexivity of
ail angles. Recall that the notches attached to the removed piece, although now unresoived,

will be removed later on via the naive decomposition. The crucial observation is that pruning

patterns does uot affect the overall number of patierns in the decomposition. The pruning
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process will converge since every removal decreases the current number of Ni-nodes by at least
one. Unfortunately this statement is a littie hasty, since case 2 of Fig.7 surely removes at
least one Ni-node but, unfortunately, also adds ozme. To establish converzence, we will have to
show that when in case 2 the subtree pruned involves a single notch z, this noich can never
be re-introduced by subsequent reductions. Let zy be the unique edge thus pruued. A simple
observation shows that no further reduction of the pattern will ever bring any of its edzes across
the segment zy. For this reason z can never become an N2-node for the pattern. But being
an N2-node is a prerequisite for becoming an N1-node again, therefore z is safely lost for the

pattern once and for all —see [3] for a detailed proof of this fact.

Condition 2.
Once Condition 1 holds, we satisfy Condition 2 by following the instractions outlined in

Fig.6-ILII1). Proving convergence foilows the lines given above and we do not elaborate on it.

The reductions showu in Fiz.6 are to be applied iteratively to each Xi-pattern {k # 4)
with adjacent N3-nodes. Convergence is straightforward. We have illustrated the complete

reduction of an Xg-pattern in Fig.8. g

8. The Polynomial Tirmme Algorithm

The previous section proved the existence of an OCD comnsisting solely of ¥ and Xg-
patterns. In this section, we present a polymomial $ime algorithm for constructing such an
OCD. For the sake of clarity, we will ignore efiiciency issues, merely showing that every routine

used in the aigorithm rams in polynomial time. Later we will discuss efficlent implementation.

We begin by constructing an oracle to answer questions of the form : “Does there exist
a pattern connecting & given notches 7" in polynomial time. This oracle will be used by the

decomposition algorithm.

Let v be an N3-node of a Y-pattern. Remove the three edges vy, vv;, vv, adjacent to v;
the ¥ -pattern becomes a disconnected set of three subtrees, for which the removed edges play

the role of an X3-pattern. This ieads us to introduce the notion of eztended X-pattern. An
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eztended X;-pattern (I = 2,3) is either an X;-pattern by itself or an X;-pattern appearing as
a subgraph of an X, -pattern (m > I). It is clear that an algorithm for testing the possibility
of an Xj-pattern Detween a given set of notches can also be used to determine the possibility
of an extended Xj-pattern, as long as the angles formed at the notches by the subtrees of the

Xm-pattern are known in advance.

To see this, we must define the notion of eztended notch and eztended range. Let v; be a
notck of the Aj-pattern, and let W he a wedge centered at v;. We define the eztended range of v,
as the set of points « such that v;u lies entirely within both P and W . In essence, the extended
range is the intersection of W with the visibility-polygon at v; [7]. In general the wedge W will
be taken as the locus of rays (i.e. half-lines} which emanate from »; and remove the reflex angle
at ;. When dealing with ordinary X-patterns, the wedge W is simply determined by the edges
of P adjacent to v;. In this case the extended range 1s simply referred to as range of v;, since
it is then defined only with respect to v; and P. In the case of extended patterns, however, the
wedge will take into account the other edges already adjacent to v;, and will thus be smalier
than 1o the previous case. Later, we consider cases where the wedge W i1s taken as the entire

plane. This is done if we do not wish to remove a refiex angle at a particular notch. In alil

cases, anyhow, we say that we eztend the notch according to certain angular specifications.

Lemma 7. Checking for the possibility of an (extended) X;-pattern between ! given notches

can be done in polynomial time (for I < 4}.

Proof: For I = 2,3 it is clear that an Xj-pattern will be possible if and only if 1) {I = 2) the
(extended) range associated with each notch contains the other notch; 2) (I = 3} the (extended)
ranges associated with the [ notches have a common intersection point forming three non-reflex
angles with respect to the notches. Computing each range can be done in O{n) time by first
computing the visibility-polygon [7}, and then clipping it along the corresponding wedge. Next
we compute the intersections of all ranges, which can be done raively in O(n?) time. To handle
Xg4-patterns, we first observe that two different kinds must be considered, as shown in Fig.0.
Assume wlog that the two notches vy and v; are adjacent to the same N3-node. We successively

apply the reductions shown in Fig.9-b-¢, with respect to A then B. Assuming wiog that this
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Figure 10 interaction between X-patterns.

Defining B(i,j) and F{i,3).
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does not create an Xz or a Yz-pattern with an N2-node between A and B, we simply observe
that the four edges emanating from the notches will now be collinear with edges of P. This
puts the total number of configurations within O{c*). We can therefore check whether any of

them is feasible, which will lead to an O(net) time algorithm. g

We can now turn to the decomposition aigorithm. The procedure for determining a max-
imum compatible sct of X-patterns is based on dynamic programming. We rely upon the
cbservation that if a certain X, or ¥, -paticrn belougs to an OCD of P, it decomposes P into &
subpolygons, i, ..., P, so that finding an OCD for each P; yields an OCD for P. We compute
maximal compatible sets of patterns for cach P;. Since the noickes of P; are also notches of P,
any X-pattern of P; 1s also an X-pattern of P. Conversely, we want to show that any X-patiern
of P involving oniy notches in P; is also an X-pattern of & . This is quite important. Dynamic
programuing proceeds bottom-up, so a maximal set of patterns involving notches of I’ must

be found hefore we know the shape of P;.

To solve this problem, we define V{1, 7} as the set of notches between v; and v, in clockwise
order, so V(%,7) = {v.,v;21,...,9;}, with index arithmetic taker modulo ¢. Let 2;,...,2; be
the notches of an X-paitern, 7, given iu clockwise order around the boundary of P, and let
¥ {1,7} be the notches of P between z, and 2zy41 in clockwise order {24 = ve_1,zaq1 = v;41).
We will show that no X-pattern with all its notches in V{1, 7) can intersect T. Assume that an
X-pattern § intersects an edge e of . Consider the shortest segment which is collinear with
¢ and has both of its endpoints on the boundary of P. This segment partitions F iato two
polygons P; and Pr (Fig.10). Since the path of T° between 2, and z,:; is 5 convex polygonal
line, it les entirely in P; or P {say, ;). Since all the notches in ¥ (i,7) are notches of Py,
$ must have notches in P, a contradiction. This independence result can be understood in
combinatorial terms. It states that two X-patterns are intersection-free if and only if their
notch sequences are not intermixed, i.e. one sequence falls completely between two consecutive

clements of the other seguence.

We next define §{1, 5), for every pair of notches v;, vj, as a maximum compatible set of Xy

or ¥Y-patterns in V{1, 7). To achieve our ultimate goal, i.e. evaluating ${1,¢), we compute all
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values §{1,7) from {§(&, 1) | V{k,1) C V{i,7}} using dynamic programming. This can be done
directly if v; and v; are not counected to the same pattern. We simply test all combinations
{S(¢,%),5{k+1,7)} for all v € V{i,7 — 1). Otherwisc we Lave to distinguish whether v; and

v; should be connected together via an Xy or a Y-pattern.

To handle the latter case, we compute all ¥-patterns which might belong to an OCD
via dynamic programming. We compute Y-subtrees (i.e. subtrees of ¥ -patteras) as well as
Y -patterns by paiching Y -subtrees together. To prevent the number of computations from
blowing up, however, we keep only the Y-subtrees that are candidates for belonging to an
GCD. A Y-subtree is considered rot to be a candidate if at the time it is computed we are
ensured of the existence of at least one OCD which does not use this ¥-subtree {although we
may not know tkis OCD explicitly yet). As a shorthand we say that a patiern or a ¥-subtree
iies In V(4,7 if all its notches do. It now remains to formalize the intuition given here and

describe the polynomial time algorithm.

Consider a Y-pattern which is used in an OCD and has at least onc N2-node, v;. This

node splits the ¥-pattern into two ¥ -subtrees, so there exists an index y such that

1. One of the ¥ -subtrees lies in V{4, 7) whereas the other lies in V(5 + 1,%).

2. All the other patterns in the OCD lie totally either in ¥V{i,5) or in V(5 + 1,1}.

We will consider the candidacy of the Y-subtree in V{{,7) immediately after S{7, 7} has been
computed. We first observe that if v;, v, ,...,v;  is a list of its notches in clockwise order, we

may dismiss the candidacy of the subtree if the following equality is not satisfied:
IS, =18+ 1,6 — )]+ + {Slimar + 1,4 — 1)+ [S{im + 1, 5], (2)

where |S(%,{)] represents the number of patterns in S{k,{).

Note that the last term in the right-hand side is to be ignored if ¢, = 7. If Relation (2) is
not satisfied, the right-hand side is strictly smaller than |S{4, 7}|. When considering candidate
Y -subtrees, we have the idea in mind that only one patiern will have notches in both V{4, 7}
and V(7 + 1,7). It would then be unreasonable to use any ¥ -subtree which does not satisfy {2},

since the patterns of §{1, 77 would provide a better decomposition altogether.

Y
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This simmple fact will be consequential in achieving a polynomial time algorithm. We still
have to cope, however, with the prospect of keeping an excessive mumber of candidate subtrees
for each pair (i,7). Another geometric observation is in order. Let L; (resp. R;) denote the
edze of P adjacent to v; and preceding (resp. following) vy in clockwise order. Whenever L; or
R; is used in designating an angle, it is understood as directed outwards with respect to v;. Let
¢ be the edge adiacent to v; in the ¥ -subtree lying in V{#,7}. The edge ¢ is called the arm of the
¥ -subtree. When the arm of a ¥ -subtree enters the expression of an angle, we assume that 1t is
directed towards the notch (here t is directed towards v;). Among ali the ¥ -subirees in V{1, 5)
for which v; is an N2-node, {2) is true and u = Z(L,;,{) < 180, we may keep the ¥ -subtree T

which minimizes the angle ¢ as the only candidate with respect to V'{1,7) (Fiz.ii-a).

We define B(i,7) as a pointer to the arm of 7. If there is no such subtree, B{z,7) is 0.
Patterns and subtrees will be represeated by linked lists, so B(t, 7) will provide access to the
entire Y-subtree 77 whenever necessary. Carrying out the same reasoning counterclockwise in

V{i,7) with now v; as an N2-node, we define F(7, ) in a similar fashion (Fig.11-b].

Having established our notation, we are now in a position to present the decomposition
alzorithm. We assume a function (ARG ) for assembling Y -subtrees when computing S(7,5}.
ARG is in general a pair of ¥-subtrees taken from B{u,v) or F'(u,v). If the two subtrees can
be patched together and form a ¥Y-pattern T, the function {) returns {C,T), where J is the
maximum number of compatible patterns which can be applied in V{{,j) including T. We
returu to a discussion of this funciion after a presentation of the algorithm. Before proceeding

with a formal description, a brief overview might be helpful.

After all necessary preprocessing in STEP 1, we use nested loops to implement the dynamic
programming scheme. Each step involves computing §(3,7) for a given value of ¢ and 7. We
start by computing the best V-pattern which connects v; and v; {(STEP 2). This involves
patching precomputed candidate ¥Y-subirees. STEP 3 computes a maximum set of compatible
patterns in V{1, j), denoted L, assuming that v; and v; do not belong to the same pattern.

Then we compute M, defined similarly, with the difference that we now allow the presence

of an X -pattern connecting v; and v;. Finally the ¥-pattern of STEP 2 (if any) is used to

compute N, so the maximal set among L, M, N is finally chosen as §{3,7). STEP 4 computes
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the Y -subtrees which lie in ¥{1, 7} and are considered as candidates. These subirees are to be
used in further iterations through STEP 2. Once a maximum compatible set of patterns for 2

has been determined, we finish off the decompesition using the naive decomposition {STEP 5).

Procedure ConvDec{P}

STEP 1:

The preprocessing involves checking that P is simple and nou-convex. We make a list of

the notches v,,...,v,, and we initialize ail B(%,1} and F{1,17) to 0.

ford=1...,e—1
for:=1,...,¢
ji=i+d [mod ¢]

do STEPS 23,4
STEP 2:
Compute the best Y-pattern connecsing v; and v; as follows:
For each k; vy € V(¢ + 1,7 — 1), compute the set @ = {J, ;4 @i, where
{\4)1 Z{(F(t,k},B(k,g}>§ /* N2-node on Pat}l */

QZ = {(B(l,k - 1),?(&,])}} U{(‘B(ivj - IJ,F{j, j)P} /* no N2 or N3 nodes on Path

¥/
Qs = {{B(i,k — 1}, Blk, 7 - 1))} /* N3-node on path */
Qa={F{i+1L,k),Flk+1,5)} /* N3-node on path */
The elements of @ are pairs of the form (C,T). Let T be the ¥Y-pattern which has the
maximuni
C value in Q.
STEP 3:
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Let ${7,7) be the maximum of L, A, N with respect to cardinality, where {max is taken
with respect to cardinality}

L = maXy, eV~ S US(E+ 1,7}

/* corresponds to a patching together of ¥-patterns */

M=max{{z;a3;}USE+Le—-USle+1,0-1USE+1,7-1)}

for all Xs-patterns &, qp,; connecting vs, va, vs, vy, With ve, vy € V{1, 7.

/* corresponds to the use of an X -pattern */

N = {the Y-pattern T of STEP 2} JS(+ 1,4, — 1)U... US(i,—1 + L — DIUS(E, +
E’j - 1?

where v;,%;,,...,%,,v; are the notches of T in clockwise order.

/* corresponds to the use of the ¥Y-pattern T */
STEP 4:

Compute B(i, 7} and F(7,7).
STEP 5:

Finish off the decomposition using the naive decomposition, i.e. adding one polygon for

each remaining notch.

The remaining of this section is devoted to explaining the various steps of the algorithm

and analyzing its complexity.

1. Patching Y -subtrees (STEP 2)

The function (ARG ) takes two Y-subtrees and constructs a ¥ -pattern if these two sub-
trees can be patehed together. ARG is any argument of the form: (F(d k), B(k, 7)), (Bli. &k —

1L, Flk, 7)) (Blik — 1), Bik,7 — 1)) or {F{d+1,k), F{k+ 1,7)), with v;, vx, v; occurring in

clockwise order.
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Figure 12 Computing the function <ARG>.
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Case 1. {F{4,k), B{k,7)) {Fig.12-a).
Let F{i,k) = T aud B(%, 5} =V, with r and s their respective arms. If /{r, 3} < 180 and
T #0and ¥V # 0, then set (F(s,k), B{k, 7)) = (1S(:, &) + |S(%, 7)| + 1, Y -pattern: TV,
eise {F{f,&), Bk, 7)) =0.

Case 2. (B(i, k- 1), F{k, 7)) (Fig.12-b].

Let B(i,k— 1) = T and F(k,5) = V. If an extended Xp-pattera is possible between v; and
vy

then set {B(i, &k — 1), F{k, 7)) = (|S{i, £ — 1)] + [S{k, 5)| + 1, Y -pattern: {v;o;}UTUV),

else (B{i. k — 1), Flk,j))=0.

Case 3. {B{i,k— 1), Blk,j — 1}) (Fig.12-c).

Let B{i k1) =T and B(k,7— 1) = V. If an extended X3-pattern W is possible between
vi, vy, Uk, then

(Blik — 1), Blk,7 = 1)) =(|S({,k— )|+ |S(&7 - DI+ 1, TUVUW),

else {B(1,k— 1)}, B(k.7 — 1) = 0.

Case 4. (F{1+1,%), F{k + 1,7} {Fig.12-d).

Let Fii+1,4) = T and F(k+1,7) = V. If an extended Xs-pattern W is possible between
Ui, ¥y, Vi, then

(Fli+ 1L.ELFle+1,7) =(|SE+ LA +|Sk+ 1,70+, TUVUW),

else (F{4+ 1.k}, F(k+1,7)) =0.

Because of Relation {2), it is clear that STEP 2 computes the Y-pattern connecting v; and
v; (if any is to be found) such that the number of compatible patterns which can be applied
in V{1 7} is maximum. All we have to check is that ali cases are indeed handled 1n STEP 2.
Consider the path from v; to v; in any such Y-pattern. If it contains an N2-node, it will be
detected in ;. Otherwise one N3-node may appear on this path and all these candidates will
be reported in Qs and Q4. The final case, handled by {2, assumes that the path from v; to v,

is free of N2 and N3-nodes.
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2. Computing S{1,7) {STEP 3)

Assume by induction that §({%,!} has been computed for all vg, v € V (1,7} (except for

S(i,5)). The algorithm investigates the three following cases In turn:
i. Disallow the presence of any pattern having both v; and v; as vertices.
2. Consider the possibility of an Xy-pattern connecting v; and v;.

3. Cousider the possibility of a Y-patternu connecting v; and v;.

Lemma 7 shows that STEP 2 aud STEP 3 can be accomplished in polynomial time. Cor-

rectness follows directly from previous discussion.

8. Constructing Y -subtrces (STEP 4)

We compute B{i,3) and F(1,7) by iteratively patching ¥ -subtrees together via two func-
tions, V{1, ARG) and Y'{i, ARG). ARG is an argument of the form B{a,¥) or (B{e,b), Blc,d))
(or the same with F). We describe these functions with respect to £’s only, all other cases

being similar.

Case 1. Y (2, B(a, b)) {Fig.13-a)

The vertices v, vp. v; occur in clockwise order. Let T = Bla,d). Extend the notch at v, to
take into account the arm of 7. Extend the notch at v; by making its associated wedge be the
entire plane. If an extended X,-pattern is possible between v,,v; and if w = Z{R;,v;v,) < 180,

set Y{1, Bla.b)) = (Y -subtree: {v;u,} UT), else Yii Ba, b)) =0.
Case 2. Y{i,(B(a.}), B{c.d}} (Fig.13-b}

The vertices vy, vp, Ue, ¥g, v, occur in clockwise order. Let T = B(a,b) and ¥V = Ble,d).
Extend the notch at v, {resp. v,) to take into account the arm of T (resp. V). Extend the
aotch at v; by making its associated wedge be the entire plane. If an extended X;-pattern 13
possibie between v, , v, 8;, compiute the locus of its N3-uode. Let § be the point in the locus
which maximizes the angle w = £{R;, v:5).

Hw < 180, set Y (4, (B{a,b), Ble, d}) = (Y -subtree:{Sv;} U{Sva} U{Sv.; UTUYV),

else Y {1, (B(a.d), Ble,d}) = 0.
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We define Y'(7, Bla,b}) in the same way as ¥ {i, B{a,b)), with Z{R;, vv,) replaced by
/{v;ve. L) (Fig13-c). Y'(i, F(a,b}) is defined similarly, so we omit the details. We are zow
ready to implement STEP 4 of the decomposition algorithm. We will only describe the com-
putation of B(1,7), since the case of F{1,7) is strictly similar. We begin by computing the four

sets B, Ba, B3, By. Let C be the value of |§{4, 7}| computed in Step 2.

B, = { Y-subtree of B(t,k}}, for all vy € V{4,7 — 1) such that {§(¢, &}|+|S(k+ 1,7} = C.
/* v 1s not a notch of the ¥-subtree */

B, ={Y'"4,B(k,j))}, forallv, € V{i+1,7—1)such that (S(E+1,4-1)+|S{k,5)|=C.
/* v:'s neighbor is an N2-node */

By= { Y, Pli+ 1, 5)} i 186+ 17) = C.

/* v;"s neighbor is an N2-node */

B, ={ Y {Fi+ L& Flk+ 1))}, forallvgeV{i+1,57-1)

such that |S(¢ + 1,8} -+ |S(k+ 1,7)| = C.

/* v;’s neighbor is an N3-node */

Let T be the Y-subtree of By |J Bz |J 83 |J B, which maximizes the angle u = £(2, L;),
where ¢ is understood here as the arm of T directed outward from v; {Fig.14). We define D{4, 7)

as a pointer to the arm of T {now understood to be directed towards v;).

Computing B(%, 7} can be clearly done in polynomial time, according to Lemma 7. Note
that Y-subtrees can be merged in constant time by linking their respective arms together. I3
shrough B; evaluate ail candidate Y -subtrees adjacent to v; and lying in V{4,7), and keep a
single candidate, i.e. the subtree which has maximum angle u. We can show by induction that
it 1s sufficient to consider only the ¥ -subfrees in the B’s and F’s. B; considers all subtrees
which do not have both v; and v; as notches {Fig.14-a}. B, and B3 compute the subtrees
whose vertex adjacent to v; is an N2-node. Note that B; and B, may share common subtrees.
The two possible configurations are iilustrated in Fig.14-b,c. Finally By detects all candidate

subtrees such that the vertex adjacent to v; is an N3-node (Fig.14-d).

4. Completing the OCD {Step 5}
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a) The two cases for defining a pseudo-notche

x

7
b) The pseudo-notches of a polygone.

Figure 15
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The last step of pracedure ConvDec consists of removing the remaining notches with the
naive decomposition. This can be done 1n polynomial time, leading to the main result of this

section.

Theorern:: An optimal convex decomposition of a simple polygon can be computed in polyno-

mial time.

4. Towards an Efficient Implementation

We will not make any attempt to evaluate the exponent in the polynomial expression
bounding the time complexity of the previous algorithm. Clearly, 1% is prohibitively high. To
produce a substantial savings in the running time of the algorithm, we first identify routines
which need to be made more efficient. We esscntially have three items to examine:

1. The nalve decomposition.
2. Computing (extended) X, and Xs-patterns.
3. Computing X4-patterns.

As we will see, improving the first two routines can be done without otherwise altering
procedure ConvDec. Unfortunately, following the exact prescriptions of the procedure would
lead to computing all possible X,-patterus. Since we may have on the order of ¢? such patterns,
discovering structural facts to limit the number of candidates to examine 18 in order. To begin,
we consider the implementation of the naive decomposition. This aliows us to introduce most

of the tools used later on.

1. The Naive Decomposition

Recall that the naive decomposition involves removing eack noich in turn by means of a
simple line segment naively drawn from the notch. For simplicity we will choose a segment
collinear with one of the edges of P adjacent to the notch. The degree requirements we made in
the original definition of the naive decomposition can he relaxed here, since their only motivation
was the simplification of subsequent proofs. Each line seginent extends from a noich to the first
intersection with the current decomposition. This can be easily accomplished in O{n -+ ¢} time,

bus this is still too siow for our purposes.
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The improvement which we propose involves (O (n} time preprocessing at the outset of the
computation. Before describing this preprocessing, a few more definitions are in order. A
convez polygonal line is a scquence of vertices {ey,...,a,} such that /(a;e;_,a:a,41) < 180,
for eacl 7 such that 1 <1 < p. The sequence is called a convez chainif {ai,..., e,,a;} forms
a convex polygon. Note that in this case a1, ..., a, corresponds to a clockwise traversal of the
polygon. It is known from [3,8] that if the vertices of a convex n-gon are stored in a linecar
array 1t is possible to compute its intersection with any line in O{logn) time. Unfortunately,
between each pair of notches v, v,,, the boundary of P certainly is a convex polygonal line

but not necessarily a convex chain. This motivates the foliowing preprocessing.

Partition the boundary of P between two consecutive noiches into conmtiguous couvex
chains. Let Ly = {y;,...,yp} be the convex polygonal line given in clockwise order, with
y1 = v; and y, = v;p;. If neither the angle /{y ys,y1y2) nor the angle Zi{yiyr—1,¥xt) is
reflex for any 2 < & < p, L; is a convex chain and remains uanchanged. Otherwise, let 7
be the smallest k such that {y:...., v, ¥x+1,¥1} is a non-convex polygon, i.e. such that ei-
ther Z{yiyxs1.y1y2) of L{yatiye, yetr1y:) is reflex {Fig.15-a). We define C; as the convex
chain {y;....,4;}. Next we apply the same procedure recursively on the remaining part of
Z;. This leads to defining €5 as {y;,,...,¥;,}, with j2 beirg the smallest & > 5, such that
(Y5, Ya+ 1 ¥ Via41) OF (Yt 1¥k, Yx+1Y5,) 18 reflex. We iterate on this process until we reach y,,

thus partitioning L, into ¢t consecutive convex chains Oy, ..., ;.

We apply the same treatment to each pair of notches {v;,v,41) and reaumber the chaius
accordingly. This leads to a partitioning of the whole boundary of P into m consecutive convex
chaing, C1,...,Cyp, in clockwise order. Lettiug z;, ;41 be the endpoints of C; in clockwise
order {(with z; = @y,41 = 91}, we call the z; the pseudo-notches of P. Note that all notches are
pseudo-notches but the converse is in general not true {Fig.16-b). This preprocessing requires
O{n) operations. We next show that the number of convex chains is of the same order of

magnitude as the number of notches.

Lemma 8. m £ 2{1+¢).
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Proof: Consider the vertices p; of P which are not notches of P and iet U be the sum of all the
angles Z{pipi+1,pi—1p¢). Similarly for all vertices p; which are notches of P, let ¥ be the sum

value of all the angles /{p;_1p;,p;p;41). It is a classical resuit of geometry that

U — V = 360. (3

e

For each convex chain O; = {a1,...,a,} such that a, is not a notch of 2, let ap4: be the vertex
of P adjacent to a, in clockwise order. We define Uy as the sum of all angles /{aja,41, a5 14;),
for ali 2 < 7 < p. Let U;,,..., U, be the values thus obtained. By construction the polygon
{ay.....ap, aps1,a1} has a reflex augle either at ap¢1 or at ay. It foliows that if ¢ (resp. d) is
the angle Z{ag41a3.apapy1) (resp. /{aia2,ap1a1)) measured {exceptionally} between —180
and +180 degrees, negative if there is a reflex angle at a,41 {resp. a:), positive otherwise, we

have

U; =360 — (c + d) > 180. {4)

Since pone of the IJ;’s accounts for the reflex angles of P, we have Els:’ﬁ* U;, < U. Also if,
between a pair of consecutive notches, 77 consists of a single convex chain, no U; is defined ou
this portion of P. whereas if it cousists of p chains, p — 1 U;’s are defined. This implies that
t = m — ¢. Combining this fact with {4} we derive
180(m—c¢)< 3. Uy <V,
i<j<t

and from (3)

U =360+V <180(2 +¢),
which completes the proof. g

This leads to the following result.

Lemma 9. In procedure ConvDec, STEP 5 can be accomplished in time O(n + ¢Zlogn).

Proof: We assume that P has been preprocessed as described above, with each convex chain
stored in a linear array. For each remaining notch v, in turn, let ¢ be the ray emanating from

v in a direction removing the reflex angle at » (for example the direction of one of the edges
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Figure 19

The superrange of a notch v,
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Optimal Convex Decompositions 101

adjacent to v}, Among the intersection-points of 2 with the edges of the current decomposition,
we must defermine the closcst to ». To do so, we compute all the intersections hetween ¢ and the
internal edges of the decomposition, i.e. the edges not on the boundary of £. It is easy to show
by induction that there are ({¢) such edges, hence O{c) intersection-points to compute. MNext
we compute the intersection of ¢ with each convex chain of P in tura, wsing the fast algorithm

of (6]. The running time of this method wili be O(n + ¢? log n). including preprocessing. §

2. Computing Eztended Patterns

We refine the preprocessing described above. Since the computation of X-patterns is
intimately based on the notion of rauges, we precompute the visibility-polygon with respect
to each motch at an overall cost of O{e?lozn} time and space. This may sccm a paradox
since storing all these polygons may rcquire as much as #{cn) storage. The crux is that only
significant vertices of the visibility-polygons will be stored. This economical description of the
visibility-polygon of a notch v is called the superrange of v. In the uext paragraphs we describe

how to compute superranges and then show how to use these new structures efficiently.

Let v be a notch of I” and %;,...,%, be the list in clockwise order of all the pseudo-
notches visible from v. Note that scanning ¢,,...,t, corresponds to a clockwise traversal of the
boundary of P as well as a clockwise sweep around v. Let D, be the ray emanating {from v
with the direction from » to t; and let Dy (resp. Dpy1) be the ray passing through the edge
of P starting from v in clockwise {resp. counterclockwise) order. The set of rays Dg, ..., D,y
partitions the region of P visible from v into p + 1 simple polygons, all adjacent to ». Typically
a polygon is comprised between D,, D, and a convex polygonal line on the boundary of F.
Let ¢; and b, be the endpoints of this convex line {with b; following a; in ciockwise order

=

Tig.16). For each notch v, we define the superrange of v, denoted SR{»), as the ordered list
SR{v] = {{ao.%0),...,{ap, bp}}.

The next resuit states that superranges can be computed very efliciently.

Lermnrna 30. An n-gon can be preprocessed in O(r) time so that the superrange of any of its

{

{clogr) time.

notches can be computed in O
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¥

Proof: The proof of this result iz too lengthy to be included here. We refer the rcaéler to [3] for
the details of the proof. In 7] El-Gindy and Avis present a linear algorithm for computing the
visibility-polygon from any point in P. Although their algorithm cannot be uscd here since it
is too slow for our purposes, we can still use it as a basis to give intwition for our algorithin.
El-Gindy and Avis’s algorithm carp be seen as an exiension of a Grakam scan. [t essemtialiy
involves traversing the boundary of P in one direction, occasionally backing up but never more
than once per vertex. Cur algorithm is conceptually similar to [7]; the only difference comes
from the traversing scheme used. Instead of going from one vertex to the next, indeed, we go
from cne convex chain tc the next. In this regard, the data type “edge” in {7] becomes, in
our algorithm, the data type “convex chain”. An important feature of the former data type
which we lose in our algorithm is the property that a ray scanning an edge moves either totally
ciockwise or totally counterciockwise. A convex chain, instead, can change diractions at most
twice. However, whenever entering a new chain, we can use the fast algorithin of (8] to compute
the changes of direction in Oflogn) time. This means that we can rewrite the entire algorithm
of [7}, now taking convex chains instead of edges as our basic objects. The price to pay will be
a factor log nn in every step of [7]’s algorithm. Since there are only O{c) convex chains, however,

the O{n) algorithm of [7] now becomes an O(clog n} algorithm. 3

The notion of superrange can be of great use for many geometric problems and is thus
interesting in its own right. To appreciate its usefulness to our specific decomposition problem,
we need introduce a function of two arguaments, R{v, D), where v is a notch of P and D is a
ray emanating from v. Let Dy, Dy, be the two rays (introduced earlier in the definition of
superranges) between whick D lies. If £{vb;,ve,;) is reflex, R{v, D} is set to 0, otherwise it
is set to the segment vy, where y is the intersection of D with e;3;. Clearly, R(», D) is still
well-defined if D is a directed segment emanating from v instead of a ray. The next two results

give motivation for these definitions.

L.emma 11. Once the superrange of each notch has been computed, R{v, D) can be computed

in O{¢) time for any notch v.

Proof: Trivial. g
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fernma 12. I v is a notch of P aud vz is the edge of an X-pattern, z lies on the segment
R(v, vz).

Proof: The result is obvious if z lies on the boundary of P, since it Is then a notch of P and
R(v,vz) is exactly vz. Suppose that z is an N3-node and vz contains R(v,vz) (Fig.17). Let
(a;,%;) be the pair of SR{v) such that vz intersects a;b;. The segment a;6; partitions P into
two polygons, P; and P, with say F; containing x. Since the portion of the boundary of P
hetween ¢; and b; is a convex chain, | is a coavex polyzon, therefore the X-pattern cannot
have notches in Py, which is in contradiction with the fact that all the angles formed by an

X-pattern are non-reflex. g

We next show how to use these results to compute extended X, and Xj-patterns efliciently.
For simplicity we will first consider the cases where the patierns are standard, i.e. not extended.

1¢ wili then be easy to geuneralize the results obtained to extended paticrns.
- Detecting Xo-patterns

Lemma 13. With O(n + ¢ + ¢ log n) preprocessing it is possible to check for the possibility

of an Xo-pattern between any two notches in constant time.

Proof: The prepracessing involves computing the superrange of each notch as well as the seg-
ments R(v;, vivy), for ali pairs of notches v;, v;. Lemmas 10 and 11 show that this can be doue
in O{e® + e?logn) time. From Lemma 12, it then follows that an Xo-pattern between v; and
v; is possible if and oaly if R(vi, v;v;) = v;v; and the segment v;v; removes the reflex angle at

both vy and v;. 3

- Detecting X3-patterns

Computing X3-patterns is somewhat more complicated. We need some additional prepro-
cessing which we next describe. Recall that R; and L; are the directed segments from v; to
the next vertices of P respectively following and preceding v; in clockwise order. This notion
i and 2(v;, L;} without ambiguity. Similarly to give

7

of direction allows us to define R(v;, B;

full meaning to angles of the form /{v;z, R{v;, Dj}), the segment R{v;, D} will be understood as

assuming the same direction as D.
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Figure 17 R(v,D) expresses the longest edge vx with
direction D of an X-pattern.

)

Figure 18 The definition of 1‘13 and i
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Optimal Convex Dacompositions 195

For each pair of notches 9;,v;, we define the two points r;; and 4; as {ollows: v;r,; is the
rightmost segment in the range of v;, visibie from v;. More precisely, if both & and L; lie on
the same side of the line passing through v;v; and Z(vv;, ;) < 180 {Fig.18-a), we determine
the pairs (ap, by} and {apy1,bpp1) of SR{v;) such that v; occurs between b, and a,.; in a
clockwise traversal of the boundary of P. We assume that e 51 does not lic on the segment
v;bp (unlike in Fig.18-b). We may have v; = b, = a4y, however. Let t denote the segment

:

R(ve, Li) if /{R{v;, L}, vi2p41) < 180 (Fig.18-c), and the segment vjap4; otherwise {Fig.18-d).

If we actually have Z{v;v;, 2} < 180, we define t as R{v;, v;u;}. Finally if Z(¢t, B;) < 180, we

define r;; as the endpoint of t (# »;). I any of the above conditions fails, r;; is 0.

We repeat the same process on w; with respect to v;. If B; and L; lie on the same side
of the line passing through v,v;, we first determine the pairs (ap,¥,) and {ap41,4,+1) from
SR{v;) such that v; occurs between by, and apy; in clockwize order. We will suppose that &,
does not lie strictly between v; and ep41. Let ¢ be R(v;, By) if £(v;0,, R(v;, B;)) < 180 or vyd,
otherwise. Similarly, if /(¢ v ;) < 180, t is reset to B(v,,v;9;) so that we can define {;; as the

endpoint of ¢ other than v; if /(L;,2) < 180. In ali other cases, [;; is set to 0.

With the superrange of each notch at our disposal, we can compute each r;; and I;; in
O(c) time, which yields an O{n + ¢ + ¢% log n} overall preprocessing time. We are now ready

to describe the computation of Xj-patterns.

Lemma 14. With O{n + ¢3 + ¢?log n) preprocessing it is possible to check for the possibility

of an Xgz-pattern between any three notches in constant time.

Proof: Let v;,v;,v; be three notches of P. We wish to0 give a set of necessary and sufficient
F

conditions for v;,vj,ve to form an Xg-pattern. Let Oy = wviry; Nujilyy, Co = viryy N varg,
and Uy = w;l;; Nuglp;. One of the following is true: 1) Oy is further from v; than C;
is {(Z{vilsy,verki} + L(verai,vxCi) = Z{vilz;,02Cy)); 2) Cg is further from v; than Oy is

{£(vaC1,valsj) + L{vkley, vired) = L{vgCq,v5ri)); 3) €y is further from v; than Oy is and
further from vy than Cs is {£{vade;, veC1) + £{vxC1,vpris) = L{vrle;, verei))- In case 1, set
T = Cq; in case Z, set & = C3, and in case 3 set & = ;. Similarly we introduce the points A

and B, defined like C with respect to {v;, va) and (vx,v;) respectively. From now on, we will
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Figure 19 Detecting X3-patterns.
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Optimal Convex Decompositions 107

assume that A, B and O fall in case 3. The other cases are treated in a similar way and maj
, Y Y

thus be omitted. We can show that »;, vy, vx are the notches of an Xs-pattern if and only if:
1. v,,v;, vz occur in clockwise order on the triangle vyv;vg.
2. rij.rik,Tei, dik, {kj, ;5 are all distinet from 0.
3. The points A, B, C are well-defined.

4. The polygon @ = v;Cv;AvgBu; is simple and has a non-empty kernel (recall that the

kernel of a polygon is the region visible from every point in the polyzon).

All these conditions can be easily chiecked in constant time with the preprocessing described

above.

We say that a point is range-visible {from a notch v if it les in 1ts range, i.e. if the segment
lies totally within P and removes the reflex angle at v. We define the wedge W (ez, ay) as the
region swept by a ray pivoting in clockwise order around a from az to ay. Let § be the N3-node
of an Xa-pattern between v;,v;,v;. To prove that the second condition is also necessary, we
show that r;; # 0, all of the other cases being similar. Since the three edges of the pattern must
lie in the triangle vy, v, vg, the first requirement {illustrated in Fig 18-a) is obvious. Considering
the pairs {a,,b,) and {ay4y, dpy:) it is equally clear that the configuration of Fig.18-b cannot
lead to an Xs-pattern since we must have Z{Sv;, S»;} < 180, where § iz the N3-node. Indeed,
Sv; must intersect bya,y; with possibly v; = b, since § must be visible {rom both »; and v;.
This remark shows that not only are the configurations of Fig.18-c,d the only ones possible,
but also that § canuot lie in the wedge W {viap4 1, Ri). The other conditions to satisfy in order
to define r,; express the fact that § lies in the triangle v;v;v; as well as the range of »;. Also,
since we must have Z(v;5,v;v;) < 180, it is legitimate to set ¢ to R(vs, vevy), if L{vivs,8) < i80.
Finally if Z(¢t, B} > 180 no point visible from v; can be range-visible from v;, so we can set ry;
to 0. Thus, when an N3-node exists, all these conditions will be satisfied and & cannot lie in

the wedge W (vir;, Ry}

As mentioned earlier, the points ag,bg, @y, b1,...,8,,5, occur in clockwise order around
the boundary of P, therefore we must have Z(vidi,viri;} < 180 if lizx # U and r;; # 0, since

v;, v, vz occur in clockwise order. It follows that if 4, B, C exist, the polygon ¢ must be simple.
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To prove that these points are well-defined, we first show that Sv; intersects v,r,;. As we have
seen that Sv; intersects viapy;, thus implying that v;r;; is not defined as R{v;, v;v;), we only
have to show that Su; intersects v;r;; whenever this segment is defined as R(v;, L;}). Since §
cannot le in W{R(v;, L;}, B;), Sv; must intersect v, A {Fig.19-a). Also Sv; cannoi intersect
Mr;j. since § would then belong to a convex polygon where no N3-node point can lie (Lemma
12). This proves our claim, and shows that r;; {as well as {;; by a similar reasoning) lies outside
the triangle Sv;o; (Fig.19-b). Finally, as we know that § cannot lie in the wedges W{vr;, R;)
and W (L;. v;;:), we derive £{v;§,virij) < 180 and /{v;l;;,v;8) < 180 which, combined with
the previous result, establishes that viry; and v,l;; intersect. This proves the existence of the

point C as well as points A and B, by symmetry. Since § must lie in W(vdig, viry;), the same

reasoning applied to v; and vg shows that § lies in the kernel of Q.

The four conditions having proven necessary, we next show that they are sufficient. Assume
that they are all satishied {Fig.19-c). Since v;riy is range-visible from v;, and so is v;l;; from v;,
Condition 3 shows that 7 is range-visible from both v; and v;. It follows that the boundary of
P cannot intersect strictly with v;C or v;C, and by symmetry, cannot intersect with the edges
of . Therefore, any point of its kernel is range-visible from v;, v,;, vx and is the N3-node of
a possible X3-pattern. Note that all three angles around the Steiner point are ensured to be

< 180 since the kernel of { lies within the triangie vjvjvp. g

Cur techniques for computing Xo and X3 patterns can be used to handie extended patterns
as weil. Patching together ¥ -subtrees in STEP 2 can be done along the same lines and no further
explanation is necessary. The only remaining question to address concerns the computation of
Y{{,ARG) and Y'{i, ARG) in STEP 4. The most general case corresponds to the computation

of ¥ (4, (B{a,b), B{e,d)}) {Fig.13) (Y’ is handled similarly}. We extend the notches v,, v, v;
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2. check for the possibility of an extended Xj-pattern between any three notches,

3. evaluate the functions ¥ and ¥'.

2. Computing X, -patierns

We now have to face the most difficult task in our quest for an efficient implementation.
Improving the previous routines simply relied on increasing the amount of preprocessing with-
out otherwisc altering the basic nature of the algorithin. The excessive number of possible
X4-patterns require conceptual changes in our algorithm. These changes are based on the
observation that of all the {Z} potential X4-patterns, only O{n?) need be retained for comsid-

eration. Implementing the seiection requires structural facts about ¢he nature of X4-patteras.

Definition 4. An Xs-pattern is said to be loose if it can be reduced so that each edge adjacent
to a notch v; is made to be collinear with either B; or L, (16 configurations should thus be

achievabie — Fig.20).

The term “reduced” is to be understood here in the sense of Lemima 6. The introduction

of loose patteras finds justification in the following.

Lemma i8. Every X4-pattern which is not reducible to an Xy-pattern or a ¥5-pattern can be

reduced to a loose X4-pattern.

Proof: Let hull{T) designate the convex hull of all the points of an X-pattern T. It is clear
that every X,-pattern, T, can be reduced to an Xy-pattern ¥ such that no further reduction
of V can lead to another Xy-pattern lying strictly inside Auwli(V), i.e. an Xy-pattern where at
least one notch lies strictly in the interior of Aull(V). We show that if T cannot be reduced to
a Y.paitern, ¥V must be loose. Assume that one of the 16 configurations cannot be achieved for
¥: by applying the reductions shown in Fig.21 we can reach an Xz-pattern, a ¥ -paitern or an
Xs-pattern lyingz strictly in hull(V}. Actually, another possibility is to reduce to the alternate

case of Fig.21, which can arise only a finite number of times. g
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Because of this result we can assume that the X -patterns considered in STEP 3 are loose
and collinear with the right edge of each notch iavoived. More precisely, if § is an N3-node
adjacent to v,, the edge R; is collinear with Sv;. From now on, all the X -patterns considered
will be assumed to have this configuration. Before addressing the main problem, we give a

convenient characterization of Xy4-patterns which we will be using throuzhout.

Lemma 17. Let vk, vi, v, v; be four notches in clockwise order around P, the tree in Fig.22

forms an Xy-pattern if and only if:
1. A and B are the only two interseciions between cdges.
2. Angles Lz, Zy, /2, /2, /y, /2 are < 180 degrees.
3. No edge of the tree intersects with the boundary of P {except at the notches).

Proof: This characterization is fairly straightforward. It is important to notice, however, that if
we consider the convex hull of the X -pattern, a clockwise order of its four vertices corresponds
to a clockwise order of the notches on the boundary of . This topological fact will be useful

throughout. g

The fact that an Xy-pattern with the configuration of Fig.22 is possible between v, v}, vx, v, 4, B
will be expressed by the notation X4{wvk,vi,vi,vj, A, B). We will often use this notation with
wodes replaced by = in order to represent the set of all possible X -patierns having the +-ed
elements filied in. Next we introduce some operations to be added to the preprocessing at STEP
i. Let r; be the segment R(v;, By} and {ay, by} be the pair of SR{v;} such that a,b, intersects

7; {recall that this pair has to be determined in order to compute R{v;, R;) - see Lemma 11).

For all v, between b, and v; in clockwise order {including b, if it is a notch}, compute Az,
the intersection of r; and r; if it exists. Note that the intersection is undefined if one of the

segments r, is 0.

Fact 3. L{Agvi, Aixvi) < 180, and A,rv; and A;rvs intersect the boundary of P at v; and vy,

respectively.

Fact 2. For each v;, the set of Aii’s contains all possible N3-nodes adjaceut to v; in the loose

K {x, 05, %, %, %, %),

k]
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Next for each v; the points Ay are sorted along r; and maintained in a sorted list. In the
foliowing, r; will be viewed either as a geometric segment or as a list of sorted points. The
data structure chosen for r; should allow constant time access to A4;z as well as two-way scans
through the list r; (use a linear array for example}. Note that the Ay might not be defined for
all pairs {1, k). All the segments r;’s can be computed in O{n + ¢Zlogn} time and setting up

their respective lists can be dome in O(e? log¢) operations.

We wish to apply the idea of patching subtrees together to the construction of X4-patterns.
In the configuration of Fig.22, the edge vy A is to be patched with the rest of the pattern. To
generate X -subtrees we extend the notion of F and B functions. We introduce the set E{<, 7}
to store all the information needed to decide, in constant time, if for a given v there exists a
vy such that Xd(vg, v;, v, 95, %, %), The set E({, 7) will be computed immediately afier S{1, 7).
To do so, we will consider each notch v; between v; and v; and determire all the v; that can
be patched to form an X;-pattern. Since for each v; we potentially have on the order of ¢
notches of the form v, we must avoid going through each of them if our goal is to compute
E{1,7) in O(e) time. Fortunately for each v; we can express the corresponding set of vz’s in

constant space after constant time computing time. It remains now to formalize the intuition

given above.

E(i,7) is defined as the set of pairs (A, Ajy) obtained for all distinct values of £ with the
following properties:

1) Xdlvg, v, vr, 05, Aix, A1), 2) if an OCD contailns a loose Xy-pattern, Xd{vg, vy, %, v;, %, *),
then there exists an OCD containing X4(vk, vy, vi, vj, A, Aj1}, where (A, Ajn} € E{s, 7). This
allows the set F{i, 7) to be used for our purposes without overiocking candidate X, -patterns.
We next show that such sets can be found satisfying this property and that each of them can

be computed in (e} time with the previous preprocessing.

1. Computing E(,7)

Recail that E{t,7) is to be computed immediately after S(i, 7).

Ty Selecting candidates on r; and r;
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To begin with, we determine the points A;; such that vy € V(7 + 1,7 — 1) {note that if the
pair {a,,b,) of SR{v;} used to compute r; is such that b, € ¥ (J,7), all the vertices in r; will
already satisfy this condition). Next we keep only the A;; which lie on the other side of the
infinite line passing through R; than the edge L; {repeat same operations with respect to r;

and Ajr}. This ensures that:
Fact 3. v;, vz, v; occur in clockwise order and the angle /2 < 180 (Fig.22}.
Fact 4. v;, v, v; oceur in clockwise order and /y < 180.
We now retain in r; only the points Aj; for which
S, H=18SE+ L=+ S+ 1,7 -1).

By doing this we keep only the candidates for N3-nodes of an GCD. Similar to the Y-
subtrees occurring in B{t, 7}, candidates must contribute a savings of |S{1, )| with respect to
the removal of reflex angles in V'(7, 7). Finally we update the lists r; and r; with the points just
chosen, maintaining the sorted order. We rename the points of r; (resp. r;) from v; (resp. v;),
A1, ..., Ay {resp. Bi,...,B;). This entire step can be done in O(c¢} time with the preprocessing
indicated earlier. We now have a list of all possible N3-nodes for candidate Xy-patterns. It
is clear that E{<, 7} can be found satisfying the specifications given above. Each Ax will be
paired with the point B such that A; and B; are the N3-nodes of the same optimal Xs-pattern
forming the maximum angle Z{A4; By, Azv;) {Fig.23). We must now give a precise procedure

for accomplishing this task.

11} Computing a region of safety

We compute the region of safety for added edges in order to ensure Condition 3 of Lemma
17. Note that A, A, By B, forms a convex guadrilateral {Facts 3,4). The next step is to compute
two convex chains ¢ = {e3,...,¢,} and D = {d;,...,d,} running from r; to r; and r; to ry,
respectively. These chains will have the property that a middle edge, (i.e. the edge of an X,-

pattern between the two N3-nodes) from rg to r; iies totally in P if and only if it lies totally

between the two chains {Fig.27-a). Informally C {resp. D) is the convex hull of the picces of
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Figure 23 Computing E(i,j).

- : I they ¢

and 85

Figure 24 The limits on middle edged RR' and SS'.

is obtais
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the boundary of P which pass through A, B, (resp. A,B;), and delimits an area of safety for
potential middle edges. Actually, as we will see later on, this definition will apply to the parts
of C and D inside the quadrilateral A} A,B;B,;. To preserve the flow of the prescutation, we

will prove the following result in the next section.

Lemma 18. The convex chains C and D can be computed in O(¢) time after O(rn + ¢?logn)

time preprocessing.

If the procedure of Lemma 18 determines that any segment drawn between A;A, and
81 By should intersect the boundary of P, it sets © or D to 0. Otherwise, it cffectively returns
two convex chains G and D, with the segment ¢34, {resp. dyc,) containing 4; and Ap (resp. B,
and Bg). Also, as stated carlicr, a segment joining A; A, and B B, will intersect the boundary

of P if and ouly if it intersects C or D,

It takes O{e} operations to test whether { and D intersect since both have O{¢) vertices.
If they do, no middle edge is possible and E(¢,7) is set to 0. Gtherwise, we can compute BR'
and §8' as the limits put upon the middle edges by the polygon P {Fig.24). §8' is computed
by beginuing at ¢; and d; and moving through D wuntil ‘all of D lies above the line passing
through dgcy, then moving through € until all of C lies below the line passing through diey.
We iterate on this process until termination, which will occur after O{e) steps since no vertex
of € or D is visited imore than ouce, Here is a more formal description of the procedure. RR'

is obtained in a stmilar manner.
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Figure 25 The funection f.

Figuze 26 The functions 84 and 8y
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Comput%ag §8'

ke=L=1
while /{dpdry1,drei) < 180 or Z(ereryy, erde) < 180
beg
while /(didg 1, deer) < 180
begin k:=k-+1 en:d

while 1’(8;61+136Jdk} < 180

begin 1=1+1 end
end

Si=¢;; 8= d

1) Computing wedges for possible middle edges

We arc now in a position to compute the wedges where middle edgzes must lie. We begin
by observing that any point in the list r; not in the wedge formed by RR' and §8§' cau be
discarded, which we can do in O{¢) time. For simplicity we still call A;,..., A, the elements

of the list ry.

For every By € r; (tecall that By = Aj, for some «) we define f(1) as the intersection of
the line supporting »; and the ray emanating from By, in the direction of Ry, and nct passing
through RB.. If this intersection does not cxist, we compare the direction of R, and r; to
decide if the “middle edze® wedge centered at By formed by the ray and r; intersects the line
supporting ry or not. If yes, we set f{I) = Ay, else f{!) = 0 (Fig.25). Also, for each Ay € ry.
let A} (resp. A!'} denote the point on the segment r; which is the closest to D, {resp. By)
and such that the segment Ag A} (resp. Ay AY) does not strictly intersect D {resp. C), lL.e. the
intersection consists of a segment or a single point. We now view rj as a list of vertices and we

find the two vertices (= g1(k)) and B, (= g2(k)) which lic ou the segment A} AY and are

the closest to AL and A}, respectively {Fig.26}. Il B; and B, do not exist, we define g;{k} and

g2{k) to be C. At this stage we need two resuits whose proofs we postpone till the next sectiom.
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Lemma 19. After O(c) preparation, the functions f, g1, g2 can be evaluated in constant time.

Lemma 20. Let V ={1,...,q} and W = {1, ....p+g}, W UWo =W |Wi|=¢q, Wal=0»p
and let f, g1, g2 be defined with: f |V +— W, a bijection aud g;,g2 | W2 — V non-decreasing
functions, with g1{:i) < g2(¢) for each i € W2. Define z | Wa — V such thai for each 1 € Wa,
z{7) is the smallest integer in ¥ with ¢1(7) < =z{{} € g2{7) and ¢ < f(={:)} if such an .integer
exists, and 0 otherwise. If f,g;, go are computable in constant time, then so is z after O{p -+ g}

preprocessiug.

IV) Computing Eii, )

Lemma 19 allows us to compute all the values of £, g1, g2 in O{e) tizne. Nate thatif f{I} =10
no middie edge adjacent to By is possible since it must lie in the wedge W{B8;By, &8: f{I}).
Therefore we can eliminate those By from r;. Once again we still represent the resulting list by
By, ..., By Similarly, if g:{k) = g2(&) = 0, Az cannot be an N3-node aud we eliminate all such
Apj from r;. Note that the values of g; and gz should be computed after the last selection on ry.
We will merge the points f{!} with the remaining vertices A, thus forming the set ¥. Strictly
speaking, f maps ! not to a point on r; but to the corresponding index in W. We can always
assume that f is injective. Next we define V' as the set of vertices left on r;; instead of mapping
to actual vertices of r;, the functions g; and g wiil map & to the corresponding indices in V.
Because of the removals, g; and g; obey the two conditions of Lemma 20. Finally we define %/
as the mublist of W corresponding to the f(I) and Wy as the complement in W, ie. the indices
corresponding to the Ag. It is easy io see that all removals, merges, and settings of functions

can be done in Of¢) time. Moreover all the conditions of Lemma 20 have been met.

We cau thus sct up the function z in O{c} time. The last step consists of keeping in £(1, 7}
all the pairs (Ag, Bya,)) such that z{Ax} # 0, with Az € r; and /{Azve, AxByia,)) < 180
{Arx = A;.). Note that x{A) is a shorthand for =(t), with ¢ the element in W2 corresponding
to Agx. Recall that if any of the previous computations faiis, we have #(¢,7) = 0. We can now

state our main result:
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Lemma 21. After Oln -+ ¢?logn) preparation, E(i,7) can be evaluated in O(¢) time.

roof: The preprocessing involves setting up the lists r; which, as seen earlier, requires O(n +
z23ogn) time. For any i and j, E(<,7) is then computed in O(c) operations. We review the
main phases of the procedure and establish its correctuess. In the preprocessing stage, Fact
1 ensures that the angles Zz < 180 and /2’ < 180, and that Condition 1 of Lemma 17 is
satisfied. Facts 3 and 4 show that /y < 180 and £z’ < 180. Then, considering the savings, by
an argument now standard, we eliminate the N3-nodes which are not candidates. Next we pair
Ap €r; with By € r; (I = 2{Ax}).

By definition, z{Az) is the smallest integer in ¥ (i.e. the vertex of r; that maximizes the
angle /y) lying on the segment {g;(%), g=(%)) (l.c. ensuring Condition 3 of Lemma 17), and
such that A; lies on the segment A1 #, with F the point on r, corresponding to f{z{4z)), l.e.
ensuring /¢y’ < 180. Finally, since z{A;) maximizes the angle /y and Z{y + z) is a constant
for all By, no vertex of r; can be paired with Az if 7z > 180. If Zz £ 180, all the conditions of
Lemma 17 are satisfied, and Az B,(a,) can be kept as the middle edge eandidate to be adjacent
to Ax. Since we know that this edge is indeed the middle edge of a loose Xy-pattern, only
savings consideration will later decide whether this edge helongs t¢ an OCD or not. This is, in
essence, the only major difference with the ¥-subtrees of B{1, 7) and F{i, 7}, where both savings

and geometry had to be tested at once in order to determine candidacy. g

2. The Proofs of the Lemmas Left Unresolved
We now justify our earlier claims and successively show how to compute the region of safety

and set up the functions f, g;. g2, z. all in O(e) time.

Lemma 18. The convex chains C and D can be computed in O(¢) time afier O{r + ¢%logn)
time preprocessing.

Proof: C and D are computed in the same manner, so we may concentrate on C exclusively.
We assume that all the superranges have been precomputed, which requires O(n + ¢%logn)
iime, as was shown in Lemma 10. Let {@p, by) be the pair of SR(v;} such that the segment ayb,

intersects r;. Recall that this pair is uniguely defined and must be computed in order to obtain
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r;. If a, is a noteh let w be g, otherwise let w be the notch of P next to a,, counterciockwise.
We may always assume that adeguate preprocessing allows us to det‘ermine w 1 constaut time,
given a,. If v; lics between w and v; in clockwise order, we simply define C as v; B, (Fig.27-c).
Qtherwise things are somewhat more complex, and before describing an algorithm formally we

will give an overview of the method.

Let L be the line collinear with the edge of C adjacent to »; {i.e. the first edge of &
counterclockwise}. L will essentially wrap around the obstacles created by the boundary of
P in a counterclockwise motion {Fig.27-d}. Let V be the polygonal line on the boundary of
P between v, and w in clockwise order. We will show that all the obstucles {which are the
vertices of C) are notches of V. Consequently we can expect to wrap around O eatirely in O{c}

operations 1f L can pivot around each vertex of € in constant time on the average.

Let z be a vertex of C with L; {resp. L;) designating the Iine L before {resp. after)
pivoting around z {Fig.27-d). We first locate L; in the superrange of z, then we scan SR(z)
counterciockwise, untii we hit a vertex by which lies on V. We can show that in general 3, is
also the next vertex of ¢'. Recall that locating L in SR{z) involves finding the pair {a;, ;) such
that L intersects a;b;. To cnsure an O(e) running time, we cannot actually locate Z; in SR{z).
Instead we determine a notch y nearby which will serve the same purpose. This notch is to be
determined at the time when Ly is computed. Thus we define the function NEXT which maps
{z,y) to {ez, br). More generally, NEXT maps any pair of notches z,y {z € V) to the pair

{ak. by} of SR{z}, computed as follows:

1. Find the two pairs (ay, b;) and {a;1;,b;41) of SR{x) such that y lies between 4; and aj;
in clockwise order.

o)

and determine the pair {az, bz} such that b is a notch of ¥ and ap41 lies outside of V. If

2. Scan the pairs of SR{z) counterclockwise, starting at (a;,b;} {i.e. (aj,b;),{a;_1.b;_;

we fail to find such a pair, return {0}).

3. When NEXT is evaluated and a pair (ag, 4z) i actually returned, the function sets a giobal
variable cnezt to az.y if it is a notch, else the notch of P next to a4y, counterclockwise

(Fig.27-d).

5
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. . . . i
lockwise. . We first show that the function NEXT is weil-defined and can be evaluated in time propor- =
-ant time, : tional to the number of pairs scanned in step 2. Recall that in any superrange SR{z}, the pairs ;
Fig.27-c). {a;.b;) realizc a partition of the set of all notches, and more precisely any notck y lies between
mally we : b; and a;.; in clockwise order for some 7. Thus, once SR{x ]} has been computed, we can extend

the preprocessing to assign each notch of P to each corresponding pair 4, ¢;41. A simple scan

through the notches of P will do it in G{ec} time. Finally, noticing that we can test if a notch

dge of O
- lies in V In constant time, and that cnezt 1s also found in constant time, for the reasons seen
mdary of ’
mdary of above, we achicve our claims. We are now ready to set out the algorithm for computing C.
1 are the Let a;b; be the segment intersecting r; with (a;,9;) in SR(v;) and let ¢ be the notch next to g
y in O{c) counterciockwise, Let 7y be the intersection r; [ r; if it is defined, or the exdpoint of r; (F# v;)
otherwise,
. after) _ -
Computing O
an SR{z)
eral b, is il v; lies between w and vy
.b;) such :‘ then return (0 = {v;, v, B,})
u SRiz). C:={v;}, di= v, e:= NEXT {v;,t)
1is to be while ¢ # 0
ich maps begin
the pair if £(dB,. de) < 180
then return (C:= C U{B,})
d=e¢
ind a;
341 .
C:= CU{d}
e:= NEXT (e,crezt)
F—1ity- <)
1) end
of V. if \
return {C:= 0)
a giobal
To see that the algorithm runs in Q{¢) time, it suffices to note that the notch cnezt moves
) ¢
lockwise
counterclockwise on the boundary of P, so O(c) pairs (aj, b;) will be examined in all the
superranges considered by the function NEXT.
.
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dy
a)
.
£
\
b)

e-*i}:
23
(Figure 27 .../...)
7
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e=1)
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Figure 27 Computing the chains C and D.
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We rext show how a middle edge intersects tiie boundary of P if and only if it intersects C

or 7. In order to connect ry and r; via a middle edge, the intersection of P and the quadrilateral
Ay B B Ay maust contain a polygon § with edges A, A, and B, B, Note that this intersection
may actually consist of several polygons. The boundary of § consists of these two segments

joined by two polygonal lines, §; and 8. §; has all its vertices in V and §2 in V', where V' is

defined as V. switching the roles of v; and v; (Fig.27-h}.

To avold computing §; and Sz explicitly {they may have on the order of n vertices), we
{first notice that no middie edge can intersect the convex huil of §; without intersecting S;.
The same observation on 82 leads to computing the convex huils 7y and Ca, respectively. For
convenicnce. we cau replace the vertex A; in §; (resp. By in S3) hy v (resp. vy} and still

preserve tlic initial property that a middie edge lies totaily in P if and only if it does not strictly

cross  or D. We now turn o the actual compuiation of C and D.

The first case considered assumes that v lies between w and vy in clockwise order. S is
then reduced to the single intersection poiut of r; and r; and S can be set fo v; B, (Fig.27-c}.
Notc that we cau always assume that in this case r; and r; intersect, otherwise the lists r; and
r; would be empty. If v; does not lic between w and »;, ¥V is not empty, and we will prove by
induction that O is actually %.herconvex hull of §; or 0 if no middle edge is possible. Fig.27-¢
illustrates the computation of the next edge of €. To ensure convexity, ail of §; must lie on the
same side of the line passing through this edge. Therefore the next vertex of € after the vertex
labelled ¢ in Fig.27-e-I) must be the point =z of ¥V, visible from &, which iminimizes the angle

/(eagpy;.ex). by and agy; are the vertices in SR{d) returned by the previous call on NEXT.

Siuce the endpoints of ¥V are notches of P,  must be one of the vertices listed in SR{e)
between which ez lies, so we must start scanning SR(e}. We oanly have to perform a counter-
clockwise scan since, by induction hypothesis, az4+1 does not lie in V', therefore the next vertex
of ' must be some a; or & in SR{e} for { < 7. Once again, the crux is that a counterciockwise
scan in SRie) corresponds both to 3 counterclockwise scan through the vertices of P and a

counterclockwise angular sweep. Note that ez ; is a point of SR{d) which has to be located in

SR{e). Siuce dz4, is not a notck in gencral this operation seems too complex.
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Optimal Convex Decompositions

Instead we can find the pair by, a;41 of SR{e) between which crezt lies (recall that cnezt
is the first notch after az4: in a counterclockwise scan through the boundary of P). Since
cnezt is a notch, this operation can be done in constant time. Thus the function NEXT will
return the next vertex of €. Note that if the point determined by MEXT is not a notch, NEXT
returns 0. Indeed, this point could not be the next vertex of € aand the aciual next vertex y
would not be visible from e. Consequently, C would ntersect o and no middie edge would
then possibie {Fig.27-{). We observe that if (7 is well-defined, there exists [ such that B, lies
in the wedge W (Cr1—: 1. C1C151) (Fig.27-g). Thus the algorithm terminates by substituting By
for Crey, Cryo. ... and the remaining vertices of ; this is legitimate since this Iast portion of

O canuot have any eflect on middle edges. 3

Lemma 19. In Ofc¢) time, it is possibie to precompute the functions 1, g2 so that an
; i p P 291, 7 ¥y

evaluation can he done In counstant time.

Proof: f{l} can be evaluated directly in coustant time by intersecting the line passing through r,
with the ray emanating from B;, coilinear with R,, yet not passing through £, with By = A;,.
If there is no intersection, f(I} = 0. Next we show how to compute all the values of g; and
gz in Ofe) time. We start by computing the intersection of r; with all the lines (dxdgy) for
consecutive values of & These points partition r; into segments, and the previous computation
provides a sorted list of their endpoints in O(e} time. To each of these segments corresponds a
unique vertex of . Then, for each Ay,..., A, in turn, we find the segment where Ag les. Let
dm be the corresponding vertex of D. We compute A, by intersecting r; with the kne passing
through Agd,, {Fig.28). This also gives 1:s a sorted list of the points A}, since D is convex.
Finally we can merge the A% and B; in O(c) time, and in one scan through the list, find for
each A} the nearest By on the same side as B;. We then set g1{£) to 1. We iterate on this
process with respect to O, defining go(%) for each A; on r;. Finally, for each Ay, we check that
g1(k) < go{k). 1 this is not the case, we sei g3{&} and g2{k) to 0. Ali of this work clearly

requires Of{c) time. §
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Figure 28 Computing g, .
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Lemma 20. Let V = {1,...,gland W = {1,.. .,p+q}, W, UW =W, W, =q, |Wa|=0»p
and let f,g1,g2 be defined with: f | ¥ +— W, a bijection and g;,g92 | Wo +— 7V non-deereasing
functions, with g;{f) < goli) for each ¢ € W,. Define z | W5 — ¥V such that for each ¢ € W»,
z(1) 1s the smallest integer in ¥V with g){7} £ z{1) < g2(¢} and 7 € f{z{4)) if such an integer
exists, and O otherwise. If f, g;, g2 are computable in coustant time, then so is = after O{p+ q}

preprocessing.

Proof: Note that the naive method for computing all the valies of z runs in Ofipg) time.
We present an G{p + ¢) time algorithm for achieving all these computations and establish its
correctness. Let y;,...,y, be the elements of W; in increasing order (1 < y; < p + g). First
of all, we consider the set of y € W2 such that gi{y) € ¢+ < g2{y) for a given 7 between 1
and g, and observe that it is a contignous {possibly empty) subset of W, since g; and g, are
non-decreasing. We compute the iargest and smallest y, denoted y;, and y;, respectively, as

{ollows {if there is no such y, we set {{;, 4;) to 0).

Initialize an array A {2 x g) to 0.
fori=1,...,p
begin
AlL ga{y:)]l:= AL, g1 (y:)]+1
Al2,02(ye)]== Af2,92(5:)]+1
end
I=1; h=0
fori1=1,...,q
begin
hi= h+All, 4]
iHl<h
then {;, k)= {{,A)
else {{;,4:):=0
L=1+A[2,1

end
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The algorithm clearly achicves a time bound of O(p + ¢g}. To establish its correctness, we

observe that the first loop sets A[1.4] to the number of y in W, such that 7 = g;{y), i.e. the
number of intervals [g1{y}. g2 (¥)], starting at 7. Shnilarly, Al2, 7] counts the number of intervals
Huishing at 7. Then since, as ¢ increases, g1 {y,;} and g2{y;} cannot decrease or pass each other,
we can derive (I;. Ah:) from ({;_1, ki 1} by counting the number of intervals which have to be
added and removed. More precisely, the difference A&; — h;_: is exactly the number of y in W
such that ¢ — 1 < gy(y) < 1, which is equivalent to g;(y} = ¢ and shows that this number is

y we have I, = {;_;. Else if go{y;,_, ) =14 — 1, I; — {i_, is the

=1/ i

Afi. 1], Likewise,if ¢ — 1 < go{wm

nuimnber of y such that g2{y} =14 — 1, i.e. A[2,4] {see example in Fig.29).

We are now ready to set up the function z by computing all its values. ¥y, < f{I} < 4,
ail ={1) with 7 between y;, and f(!) must be set to 1. Now if y;, < yp, < f{{). all z(s) with ¢
between y;, aud ya, must be set to 1. In both cases, no other ¢ in W should have z{({) equal
to 1. Then we can carry out the same reasoning with 2, assigning this value only to the z(1)

which have not been set yet. Since, as ¢ increases from 1 to g, {; and h; canuot decrease or pass

each other {unless ({;,h;} = 0) a possible implementation is:

Initialize all {4} to D foralls =1,...,¢

M=0

a:= max{y;,, M)
bi= min(F{5), ya,)
ifa<band (i hi) #£0
then
for j=a,...,%
begin z(7):= { end
M=>+1

end
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Note that if 7 belongs to W, the value assigned to z{4) is meaningless. The algorithm runs
g 1 gu 1 g g

in time Q(p + q), which completes the proof. 3

3. The Cubic Algorithm

We are now prepared to use the information contalned in E{4, 7) to producc an OCD. E{s,. 7}
may be computed in STEP 4 of the algorithm ConvDec, with the additional preprocessing
described earlier. We can now replace the former computation of A in STED 3 by the following:

Inmitialize M as the empty set.

For each vg € V{1 + 1,7 — 2} such that F{k, ) contains a pair {Azs, Bj1), assign to M the

maximum {with respect to cardinality) of A1 and

X‘i(ui,vk,w,vj,Akg,Bﬁ:}US(t'~§- 1,6 — EEUS(% + 11— 1)1}3(5 + 1,7 — ])_

For cachi vx € Vi< + 2,7 — 1} such that E{i, k) contains a pair (A,;, Bxy), assign to M the
maximum {with respect to cardinality) of M and

X&i(vj,v.-,v;,vk,ﬁ,-j,gk;)U.‘i’(i+ 1,! - ji)US{l'f’ 1,#15 - 3}{;3(.‘: —+ 3,] - j.:i.

Note that we investizate the two possible topologies of an Xy-pattern lying in V{4, 7] and
adjacent to v; and »; {Fiz.30). The procedure for computing M requires O(c) time and, from
Lemma 21, we know thai the additional preprocessing requires O(n + ¢? logn) time. We are

now ready o evaluate the complexity of each step of the decomposition algorithm:

— Preprocessing: Oi{n + ¢ + ¢Zlogn}

- Step 2: Ofc®)

- Step 8: O(c?)

- Step 4: O(e%)

~ Step 5: Oln+c?logn)

The total running time of the decomposition aigorithm is therefore O(n + ¢ + ¢ logn),

which is easily shown to be also O{n + ¢%).

Main Theoremn. It is possible to compute an optimal convex decomposition of a simple

polygon with n vertices and ¢ reflex angles in time O{r + ¢®).
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Figure 30 Computing B with the topologies of X4-pattern
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We should note that in §(4,i — 1) the algorithm provides us with ¢ optimal, yet not all

uecessarily identical, decompositions.

5. Concluding Remarks

The main result of this paper is an algorithm for decomposing a polygon mnto a minimum
number of convex parts. The algorithm is linear in the number of vertices and cubic in the
pumber of refex angles. From a theoretical viewpoint, our main achievement has been to show
that the decomposition problem was polynomial, even when Steiner points are allowed in the
decomposition. Also one merit of our algorithm is to have its complexity expressed in the form
O{n + f(e)). This is to our knowledge the only decomposition algorithm with this property;
one interesting open problem is to decide whether the preprocessing used in our algorithm can

be applied to the algorithms known for the case where no Steiuer points are allowed in the

decomposition. Indeed, Greeue’s O(n%e?) and Keil’s {¢?nlogr) methods for this problem are

less eflicient than our algorithm.

On the practical side, the complexity of our algorithm might be acceptable, given the near-
convexity of most polyzons in practice. Unfortunately the algorithm seems inherently intricate
and implementing it in its most elaborate form is certainly a formidable task. We might be

willing, however, to sacrifice a little efficiency in order to achieve greater simplicity. Computing

only X,-patterns and doing away with superranges may often be found an acceptable com-
promise. Even the naive decomposition, when implemented efficiently, may turn out the best
alternative if we can afford to miss an optimal solution by at worst a factor of two in the number

of convex parts.

Of course, only the cubic algorithm reveals the genuine “beauty” of the problem. Its long
development involves many subproblems, most of which are interesting in their own right {we
believe). For example the concept of superranges might provide an effective means of dealing
with visibility problems and its fast computation {O{clogn)) makes it very appealing. This

can be viewed as a first step towards adapting non-convexity to algorithms for convex designs.
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