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0.1. INTRODUCTION 10.1 IntroductionPractitioners frequently use polygons to model objects in applications wheregeometry is important. In polygon decomposition we represent a polygon asthe union of a number of simpler component parts. Polygon decompositionhas many theoretical and practical applications and has received attentionin several previous surveys [26, 68, 107, 128, 133].Pattern Recognition is one area that uses polygon decomposition as atool [41, 110, 111, 112, 133]. Pattern recognition techniques extract in-formation from an object in order to describe, identify or classify it. Anestablished strategy for recognising a general polygonal object is to decom-pose it into simpler components, then identify the components and theirinterrelationships and use this information to determine the shape of theobject [41, 111].Polygon decomposition is also useful in problems arising in VLSI art-work data processing. Layouts are represented as polygons, and one ap-proach to preparation for electron-beam lithography is to decompose thesepolygon regions into fundamental �gures [6, 42, 100, 102]. Polygon de-composition is also used in the process of dividing the routing region intochannels [82].In computational geometry, algorithms for problems on general polygonsare often more complex than those for restricted types of polygons such asconvex or star-shaped. The point inclusion problem is one example [114].For other examples see [4] or [108]. A strategy for solving some of thesetypes of problems on general polygons is to decompose the polygon intosimple component parts, solve the problem on each component using aspecialized algorithm, and then combine the partial solutions.Other applications of polygon decomposition include data compression[92], database systems [90], image processing [97], and computer graphics[131].Although much work has been done on decomposing polyhedra in threeor higher dimensions [17, 10], we will restrict the scope of this survey tothat of decomposing polygons in the plane.Triangulation, the partitioning of the interior of a polygon into trian-gles, is a central problem in computational geometry. Many algorithms forpolygons begin by triangulating the polygon. As early as 1978, Garey et al[45] provided an O(nlogn) time algorithm, but no matching lower boundwas known. The importance of the problem led to a signi�cant amount ofresearch [39, 132] on algorithms, culminating in Chazelle's linear time algo-rithm [27]. Although it certainly is an example of a polygon decompositionproblem, the triangulation problem has taken on a life of its own and wewill consider a systematic study of the triangulation problem, as well as



2related mesh generation work, to be outside the scope of this survey. For agood survey of mesh generation and optimal triangulation see [17].There are a wide variety of types of component subpolygons that areuseful for polygon decomposition. These include subpolygons that are con-vex, star-shaped, spiral or monotone, as well as �xed shapes such as squares,rectangles and trapezoids. Before proceeding further we provide de�nitionsfor some of the restricted types of polygons. A point x in a polygon P isvisible from a point y in P , if the line segment joining x and y lies entirelyinside P . We treat a polygon as a closed set, thus a visibility line maytouch the boundary of P . A polygon P is convex if every pair of points inP are visible from each other. A polygon P is star-shaped if there existsat least one point x inside P from which the entire polygon is visible. Theentire set of points in P from which P is visible is called the kernel of P . Apolygonal chain in a polygon P is a sequence of consecutive vertices of P .A spiral polygon is a polygon whose boundary chain contains precisely oneconcave subchain. A polygonal chain is monotone with respect to a line lif the projections of the vertices in the chain on l occur in exactly the sameorder as the vertices in the chain. A polygon P is monotone if there existsa line l such that the boundary of P can be partitioned into two polygonalchains which are monotone with respect to the line l. See �gure 1.It is also useful to classify the type of polygon that is being decomposed.Polygons may be simply connected or they may contain holes. Holes arenonoverlapping "island" simple polygons, inside the main polygon. Someauthors allow for degenerate holes such as line segments or points. Thecomplexity of a decomposition problem usually increases if the polygoncontains holes. A polygon is said to be orthogonal if all of its sides areeither horizontal or vertical. Orthogonal polygons are relevant in manyapplications and in this survey special emphasis is placed on the decompo-sition of orthogonal polygons.Polygon decompositions are also classi�ed according to how the compo-nent parts interrelate. A decomposition is called a partition, if the compo-nent subpolygons do not overlap except at their boundaries. If generallyoverlapping pieces are allowed we call the decomposition a cover.Decomposing a polygon into simpler components can be done with orwithout introducing additional vertices which are commonly called Steinerpoints. While the use of Steiner points makes subsequent processing of thedecomposed polygon more complex, it also often allows the use of fewercomponent parts. See �gure 2.In a polygon with n vertices, at some N of the vertices the interiorangle will be reex (greater than 180�). The number N of reex verticesof a polygon can be much smaller than n and we analyze the complexity ofdecomposition algorithms with respect to both n and N . See �gure 2.



0.2. DECOMPOSING GENERAL POLYGONS 3In most applications we want a decomposition that is minimal in somesense. Some applications seek to decompose the polygon into the minimumnumber of some type of component. Other applications use a decompositionthat minimizes the total length of the internal edges used to form the de-composition (minimum "ink"). Perhaps the earliest minimum "ink" resultis due to Klincsek [69]. He uses dynamic programming to �nd the min-imum "ink" triangulation of a polygon. His work was inuential in thatit inspired subsequent dynamic programming solutions to decompositionproblems. As in the example of �gure 6, a minimum edge length decom-position can be quite di�erent from a minimum number decomposition forthe same component type.In the next section we will review the work that has been done concern-ing partitioning and covering general polygons. In section 3 we turn ourattention to orthogonal polygons and consider the work done on decompos-ing orthogonal polygons.0.2 Decomposing General PolygonsIn this section we consider both partitioning and covering problems forgeneral polygons.0.2.1 Polygon PartitioningWhen partitioning a polygon into simpler subpolygons, it is the applicationwhich determines the type of subpolygon to be used. Syntactic patternrecognition uses convex, spiral and star-shaped decompositions [41, 110,112, 123, 9, 133]. VLSI applications use trapezoids [6]. In the rest of thissection we will consider each of these types of subpolygons in turn.Convex SubpolygonsWhen the polygon may contain holes, the problem of partitioning a polygoninto the minimum number of convex components is NP-hard [79], eitherallowing or disallowing Steiner points. For polygons without holes much ofthe work done disallows Steiner points. A 1975 algorithm, due to Feng andPavlidis [41], runs in O(N3n) time, but does not generally yield a minimumdecomposition. Schachter's 1978 [123] O(nN ) time partitioning algorithmalso cannot guarantee a minimum number of components.For polygons without holes disallowing Steiner points, several approxi-mation algorithms provide results guaranteed to be close to optimum. In1982 Chazelle [25] provides an O(nlogn) time algorithm that �nds a parti-tion that contains fewer than 413 times the optimal number of components.



4Later, Greene [55], and Hertel and Mehlhorn [61] provide O(nlogn) timealgorithms that �nd a partition that contains less than or equal to fourtimes the optimal number of components. Note that, for polygons withoutdegenerate holes, any convex partition that does not contain unnecessaryedges will be within four times of the optimal sized partition. This is trueas each added edge can eliminate at most two reex vertices and each reexvertex requires at most two edges to eliminate it in any convex partitionthat does not contain unnecessary edges.The year 1983 saw the achievement of algorithms obtaining the optimalnumber of convex components. When disallowing Steiner points, Greene[55] developed an O(N2n2) time algorithm for partitioning a polygon intothe minimum number of convex components. Independently, Keil [64, 65]developed an O(N2nlogn) time algorithm for the problem. This resultemploys a general technique for reducing the size of the state space in adynamic programming formulation.Allowing Steiner points makes the problem quite di�erent. There arean in�nite number of possible locations for Steiner points. Nevertheless,as early as 1979 Chazelle and Dobkin [24, 28, 29] developed an O(n +N3) time algorithm for the problem of partitioning a polygon into theminimum number of convex components. They de�ne an Xk-pattern tobe a particular interconnection of k reex vertices which removes all thereex angles at these vertices and creates no new reex angles. See �gure3. They achieve their algorithm by further developing this idea and usinga dynamic programming framework.Dobkin et al [37] show how to extend the existing algorithms for decom-posing a polygon without holes into convex components to optimally parti-tion a splinegon into convex components (with or without Steiner points).A splinegon is a polygon where edges have been replaced by "well behavedcurves" [37].Partitioning a polygon with holes into convex components remains hardunder the minimum edge length criterion. With Steiner points Lingas etal [82] show the problem is NP-hard. Disallowing Steiner points, Keil [64]shows the problem is NP-complete.Allowing Steiner points, Levcopoulos and Lingas develop approximationalgorithms for the problem [76]. For polygons without holes, they have anO(nlogn) time algorithm that yields a solution of size O(plogN ), wherep is the length of the perimeter of the polygon. For polygons with holes,they have an O(nlogn) time algorithm that produces a convex partitionof size O((b+m)logN ), where b is the total length of the boundary of thepolygon and the holes and m is the minimum length of its convex partition.No optimal algorithms for the problem are known when Steiner points areallowed.



0.2. DECOMPOSING GENERAL POLYGONS 5For a convex polygon with point holes, without the use of Steiner points,Plaisted and Hong [113] give a polynomial time algorithm for partitioninginto convex subpolygons, such that the total edge length is within 12 timesthe minimumamount required. For this problem Levcopoulos and Krznaric[75] give a greedy type O(nlogn) time algorithm that yields a solution thatis also within a constant factor of optimal.The year 1983 also saw the achievement of optimal algorithms underthe minimum edge length criteria. For polygons without holes, disallowingSteiner points, Keil [64] develops an O(N2n2logn) time dynamic program-ming algorithm for the problem of partitioning a polygon into convex sub-polygons while minimizing the total internal edge length. Independently,Greene noticed that his algorithm for the convex minimum number prob-lem [55] can be adapted to yield an O(N2n2) time algorithm for the convexminimum edge length problem.Spiral SubpolygonsRecall that a spiral polygon is a simple polygon whose boundary chaincontains precisely one concave subchain. Keil [64] shows that the problemof partitioning a polygon with holes into the minimum number of spiralcomponents is NP-complete, when Steiner points are disallowed. For poly-gons without holes, again disallowing Steiner points, Feng and Pavlidis [41]provide a polynomial time algorithm for the problem that does not gen-erally yield the minimum number of components. Keil [65] provides anO(n3logn) time algorithm to partition a polygon without holes, disallow-ing Steiner points, into the minimum number of spiral components. Healso provides an O(n4logn) time algorithm for the same problem under theminimum edge length optimality criterion [64]. No results are known con-cerning partitioning polygons into spiral components if Steiner points areallowed.Star-shaped SubpolygonsSteiner points are disallowed in most of the known results concerning star-shaped partitioning. Again we see the hardness of decomposing a polygonwith holes as Keil [64] shows that the problem of partitioning a polygonwith holes into the minimum number of star-shaped components is NP-complete. In 1981, for polygons without holes, Avis and Toussaint [9] givean O(nlogn) time algorithm that partitions a polygon into at most n3 star-shaped components. This algorithm does not generally yield a minimumpartition. In 1984 Aggarwal and Chazelle [2] are able to partition a polygoninto n3 components in O(n) time.



6 In order to achieve a partition into the minimumnumber of star-shapedcomponents, in 1983 Keil employs dynamic programming to develop anO(n5N2logn) time algorithm [65]. The idea is to extend the solutions forsmall subpolygons into solutions for larger subpolygons. In general however,there can be an exponential number of minimum star-shaped partitions of asubpolygon. Furthermore, there are situations where no minimumpartitionof a subpolygon can be extended into a global minimum partition. Thesolution is to introduce pseudo star-shaped polygons. A pseudo star-shapedsubpolygon has the property that there exists a point x in the polygon, butnot in the subpolygon, so that every point in the subpolygon can be seenfrom x. The algorithm proceeds by keeping one star or pseudo star-shapedminimum partition of each of a number of equivalence classes of partitionsat each subpolygon.Shapira and Rappoport [125] make use of a form of star-shaped partitionin a new method for the computer animation task of shape blending. Theyseek a partition into the minimumnumber of star-shaped components, eachof whose kernels contains a vertex of the polygon. When such a partitionexists, they compute it using a restriction of Keil's algorithm [64]. Sincesuch a partition does not always exist, they also provide a heuristic whichallows Steiner points.For the problem of partitioning a polygon into star-shaped compo-nents while minimizing the total internal edge length, Keil [64] providesan O(N2n5logn) time algorithm.Monotone SubpolygonsRecall that a polygon P is monotone if there exists a line, l, such thatthe boundary of P can be partitioned into two polygonal chains, each ofwhich is monotone with respect to l. For a polygon with holes, disallowingSteiner points, Keil [64] shows that the problem of partitioning a polygoninto the minimumnumber of monotone subpolygons is NP-complete. For apolygon without holes, Keil [64] develops an O(Nn4) time algorithm for theproblem. The algorithm relies on the fact that there are only a polynomialnumber of preferred directions with respect to which a subpolygon can bemonotone. If a minimum partition is not important Garey et al [45] canprovide an O(nlogn) time algorithm.If all of the subpolygons in a partition are monotone with respect tothe same line then the partition is a decomposition into uniformly mono-tone components. Liu and Ntafos [88] give algorithms for partitioning apolygon without holes into the minimum number of uniformly monotonesubpolygons. They give an O(nN3 + N2nlogn + N5) time algorithm thatdoes not use Steiner points, and an O(N3nlogn+N5) time algorithm that



0.2. DECOMPOSING GENERAL POLYGONS 7does allow Steiner points.For the problem of partitioning a polygon into monotone componentswhile minimizing the total internal edge length, Keil [64] gives an O(Nn4)time algorithm.Other SubpolygonsThe problem of partitioning a polygonal region into the minimum numberof trapezoids, with two horizontal sides, arises in VLSI artwork processingsystems [6]. A triangle with a horizontal side is considered to be a trapezoidwith two horizontal sides one of which is degenerate. See �gure 4. In suchsystems the layout is stored as a set of polygonal regions which shouldbe partitioned into fundamental �gures since the aperture of a patterngenerator is restricted. Trapezoids have been used as fundamental �gures.Asano et al [6] develop an O(n3) time algorithm, based on circle graphs,for the problem when the polygon does not contain holes. If a minimumpartition is not important, Chazelle is able to partition a polygon intotrapezoids in O(n) time as a by-product of his linear time triangulationalgorithm [27]. In the case where the polygon does contain holes, Asano etal [6] show the problem to be NP-complete, and they provide an O(nlogn)time approximation algorithm that �nds a partition containing not morethan three times the number of trapezoids in a minimum partition.Everett et al [40] consider the problem of partitioning a polygon intoconvex quadrilaterals. They use Steiner points, and give an O(n) timealgorithm that is not guaranteed to provide the minimum number of com-ponents. Another O(n) time algorithm for this problem, that limits thenumber of Steiner points, is given in [116]. It is not always possible to par-tition a polygon into convex quadrilaterals without adding Steiner points.Lubiw [91] shows that the problem of deciding whether or not a partitionwithout Steiner points is possible is NP-complete. Algorithms for parti-tioning convex polygons with point holes into quadrilaterals are given in[134, 18].Levcopoulos et al [81, 78] provide some algorithms for partitioning sometypes of polygons intom-gons under the minimumedge length optimizationcriterion.0.2.2 Polygon CoveringMuch of the work done concerning covering general polygons has involvedconvex or star-shaped components.



8Convex SubpolygonsThe problem of covering a polygon with the minimum number of con-vex subpolygons �nds application in syntactic pattern recognition [41, 110,112, 111, 109]; for example in the recognition of chinese characters. In1982 O'Rourke was one of the �rst to investigate the complexity of thisproblem. He showed that, although it is di�cult to restrict the possi-ble locations of Steiner points [105], the problem is nevertheless decidable[104, 103]. For polygons with holes, O'Rourke and Supowit show that theproblem is NP-hard [109], with or without Steiner points, and for this prob-lem O'Rourke[106] provides an algorithm which runs in exponential time.Several years later, in sharp contrast to the partitioning situation, Culber-son and Reckhow show that even if the polygon does not contain holes,the problem of covering a polygon with the minimum number of convexcomponents remains NP-hard [35].The di�culty of the problemmotivates the consideration of the problemof covering a polygon with a �xed number of convex subpolygons. Shermer[129] provides a linear time algorithm for recognizing polygons that canbe covered with two convex subpolygons. Belleville provides a linear timealgorithm for recognizing polygons that can be covered with three convexsubpolygons [13, 14].A more general type of polygon decomposition allows set di�erence aswell as union as an operator to apply to the components. This additionaloperator may allow for a smaller number of component pieces. Batchelor[12] investigates a procedural approach to convex sum/di�erence decom-positions. This type of decomposition has been applied to the automatictransformation of sequential programs for e�cient execution on parallelcomputers [94]. Also, Tor and Middleditch [131] give an O(n2) time al-gorithm for �nding a convex sum/di�erence decomposition that may notnecessarily use the minimum number of components.Star-shaped SubpolygonsThe problem of covering a polygon with star-shaped subpolygons has oftenbeen investigated as the problem of guarding an art gallery [9, 107, 128].The region visible from a guard is a star-shaped subpolygon and the poly-gon models the art gallery. Knowledge of this problem helps with theunderstanding of visibility problems within polygons.General satisfactory solutions are not known for the minimum star-shaped covering problem. In 1983 for polygons with holes, O'Rourke andSupowit show the problem to be NP-hard [109]. Later Lee and Lin [70] showthe problem remains NP-hard, even without holes, if the kernel of each star-



0.3. ORTHOGONAL POLYGONS 9shaped subpolygon must contain a vertex. Aggarwal [1] then shows that theunrestricted problem is NP-hard for polygons without holes. More recentlyother variations of the problem are shown to be NP-hard by Hecker andHerwig [59], and by Nilsson [101].In 1987 Ghosh [48] develops an O(n5logn) time approximation algo-rithm, that �nds a cover within a factor of O(logn) of optimal, if the kernelsof the subpolygons are restricted to contain vertices. His algorithm workswhether or not the polygon contains holes. In 1988 Aggarwal et al [3] con-sider a restricted problem, for polygons without holes, where subpolygonsides must be contained in either edges, edge extensions or segments of linespassing through two vertices of the polygon. For this restricted problemthey develop an O(n4logn) time approximation algorithm that producesa cover within a factor of O(logn) of optimal. They also show that therestricted problem remains NP-hard.Belleville [15] investigates the problem of recognizing polygons that canbe covered by two star-shaped subpolygons. He gives an O(n4) time algo-rithm for recognizing such polygons.Shermer [127] contributes to knowledge of related problems by givingbounds on the number of generalized star-shaped components required ina generalized cover.Other SubpolygonsSpiral polygons and rectangles are two other types of component subpoly-gons that have been used to cover a polygon. For polygons with holes,O'Rourke and Supowit [109] show that covering with the minimum num-ber of spiral subpolygons is NP-hard.Levcopoulos and Lingas [77] consider covering acute polygons, whoseinterior angles are all greater than 90�, by rectangles. They show that forconvex polygons, the minimum number of rectangles needed in a cover isO(nlog(r(P ))), where r(P ) is the ratio of the length of the longest edgeof the polygon to the length of the shortest edge of the polygon. LaterLevcopoulos [71, 74] extends this result and gives an algorithm that coverssuch an acute polygon with O(nlogn+m(P )) rectangles in time O(nlogn+m(P )), where m(P ) is the number of rectangles in an optimal cover.0.3 Orthogonal PolygonsIn this section we turn our attention to the problem of decomposing or-thogonal polygons. An orthogonal polygon is a polygon whose edges areeither horizontal or vertical. Orthogonal polygons are also referred to as



10rectilinear polygons. They arise in applications, such as image processingand VLSI design, where a polygon is stored relative to an implicit grid.The set of orthogonal polygons is a subset of the set of all polygons, thusany polynomial time algorithm developed for general polygons will applyto orthogonal polygons, but problems NP-complete for general polygonsmay become tractable when restricted to orthogonal polygons. There arealso natural subpolygons for orthogonal polygons, such as axis aligned rect-angles or squares that are less relevant to general polygons. In the nexttwo subsections we treat partitioning and covering problems for orthogonalpolygons.0.3.1 Partitioning Orthogonal PolygonsRectangles are the most important type of component to consider in relationto orthogonal polygons. The problem of partitioning orthogonal polygonsinto axis aligned rectangles has many applications.Image processing is often more e�cient when the image in rectangular.For example, Ferrari et el [42] indicate that the convolving of an image witha point spread function can be made particularly e�cient by specifying thenonnegative values of the point spread function over a rectangular domainand specifying that function to be zero outside that domain. They suggesthandling a nonrectangular orthogonal image by partitioning it into theminimum number of rectangular subregions.In VLSI design, two variations of the problem arise. The �rst occurs inoptimal automated VLSI mask fabrication [83, 100, 102]. In mask genera-tion a �gure is usually engraved on a piece of glass using a pattern generator.A traditional pattern generator has a rectangular opening, thus the �guremust be partitioned into rectangles so that the pattern generator can ex-pose each such rectangle. The entire �gure can be viewed as an orthogonalpolygon. Since the time required for mask generation depends on the num-ber of rectangles, the problem of partitioning an orthogonal polygon intothe minimumnumber of rectangles becomes relevant. Another VLSI designproblem is that of dividing the routing region into channels. Lingas et al[82] suggest that partitioning the orthogonal routing region into rectangles,while minimizing the total length of the lines used to form the decompo-sition, will produce large "natural-looking" channels with a minimum ofchannel to channel interaction. Thus the minimum "ink" criteria is alsorelevant.Other application areas for the problem of partitioning orthogonal poly-gons into the minimumnumber of rectangles include database systems [90]and computer graphics [54].At this point we should note that the use of Steiner points is inherent



0.3. ORTHOGONAL POLYGONS 11in the solution of the problem of partitioning into rectangles. For examplefor an orthogonal polygon with one reex vertex, a partition can be formedby adding a horizontal line segment from the reex vertex to the polygonboundary. In fact a generalization of this idea forms the basis for mostpartitioning algorithms. The following theorem [87, 102, 42] expresses this.See �gure 5.Theorem 1 An orthogonal polygon can be minimally partitioned into N �L � H + 1 rectangles, where N is the number of reex vertices, H is thenumber of holes and L is the maximum number of nonintersecting chordsthat can be drawn either horizontally or vertically between reex vertices.The theorem implies that a key step in the decomposition problem isthat of �nding the maximum number of independent vertices in the inter-section graph of the vertical or horizontal chords between reex vertices.This problem can in turn be solved by �nding a maximum matching in abipartite graph. In 1979 Lipski et al [87] exploited this approach to developan O(n 52 ) time algorithm for partitioning orthogonal polygons with holes.Algorithms for the same problem running within the same time boundswere also developed in [102] and [42]. In the early 1980s the special struc-ture of the bipartite graph involved allowed the development of improvedalgorithms for the problem running in O(n 32 logn) time [62, 85, 86]. Thesealgorithms have been recently extended by Soltan and Gorpinevich [130]to run in the same time bounds even if the holes degenerate to points. Itis open as to whether or not faster algorithms can be developed. The onlyknown lower bound for the problem with holes is 
(nlogn) [83].If the polygons do not contain holes then faster algorithms are possi-ble. In 1983 Gourley and Green [54] develop an O(n2) time algorithm thatpartitions an orthogonal polygon without holes into within 3=2 of the min-imum number of rectangles. In 1988 Naha and Sahni [100] also developan algorithm that partitions into less than 3=2 of the minimum numberof rectangles, but their algorithm runs in O(nlogn) time. Finally in 1989,Liou et al [83] produce an O(n) time algorithm to optimally partition anorthogonal polygon without holes into the minimum number of rectangles.The O(n) time is achieved assuming that the polygon is �rst triangulatedusing Chazelle's linear time triangulation algorithm.Note that the three dimensional version of the problem is NP-complete[36].Minimizing the total length of the line segments introduced in the par-titioning process is the other optimization criterion that arises in the ap-plications. See �gure 6. Lingas et al [82] were the �rst to investigate thisoptimization criteria. They present an O(n4) time algorithm for the prob-lem of partitioning an orthogonal polygon without holes into rectangles



12using the minimum amount of ink. If the polygon contains holes they showthat the problem becomes NP-complete.In applications holes do occur, thus the search was on for approximationalgorithms for the problem. The �rst algorithm of this type was given byLingas [80] . In 1983 he presented an O(n4) time algorithm to partition anorthogonal polygon with holes into rectangles such that the amount of "ink"used is within a constant of the minimum amount possible. Unfortunately,the constant for this algorithm is large (41). In 1986 Levcopoulos [73]was able to reduce the constant to �ve while also producing an algorithmrunning in only O(n2) time. In the same year [72] he further reduced thetime to O(nlogn), but at the expense of a large increase in the size of theconstant.The restriction of the problem to where the orthogonal polygon becomesa rectangle and the holes become points is also NP-complete [82]. Gonza-lez and Zheng [51] show how to adapt any approximation algorithm for therestricted problem to yield an approximation algorithm for the more gen-eral problem where the boundary polygon need not be a rectangle. Theirmethod is to use the algorithm given in [82] to partition the boundary or-thogonal polygon into rectangles, then each of these rectangles along withthe point holes inside it, becomes an instance of the restricted version ofthe problem.In 1985 Gonzalez and Zheng [51] give an approximation algorithm, run-ning in O(n2) time that partitions a rectangle with point holes into disjointrectangles, using no more than 3+p3 times the minimumamount of "ink"required. The next year Levcopoulos [72] improves the time to O(nlogn),while maintaining the same bound. Later Gonzalez and Zheng [53] give analgorithm that runs in O(n4) time, that produces a solution within 3 timesoptimal. They use a so called "guillotine" partition to develop an approx-imation algorithm within 1:75 times optimal [52], but which uses O(n5)time. See �gure 7. A recent paper [49] provides a simpler proof that the"guillotine" partition is within 2 times optimal. If time is more important,Gonzalez et al [50] give an algorithm that runs in O(nlogn) time, but only�nds a solution guaranteed to be within four times optimal.If Steiner points are disallowed, then quadrilaterals rather than rect-angles become the natural component type for the decomposition of or-thogonal polygons. Kahn, Klawe and Kleitman [63] show that it is alwayspossible to partition an orthogonal polygon into convex quadrilaterals. Thisis not always possible for arbitrary polygons. This partitioning of a poly-gon into convex quadrilaterals is referred to as quadrilateralization. Sackand Toussaint develop an O(nlogn) time algorithm for quadrilateralizingan orthogonal polygon [119, 121]. They use a two step process. First theorthogonal polygon is partitioned into a speci�c type of monotone poly-



0.3. ORTHOGONAL POLYGONS 13gon, these are in turn partitioned into quadrilaterals in linear time [120].Lubiw [91] also provides an O(nlogn) time quadrilateralization algorithmfor orthogonal polygons. Arbitrary monotone or star-shaped orthogonalpolygons can be quadrilateralized in linear time [121].Let us now turn to the problem of �nding the minimum edge lengthquadrilateralization of an orthogonal polygon. For this problem Keil andSack [68] give an O(n4) time algorithm. Later Conn and O'Rourke [32]improve this to O(n3logn) time.There are other known results concerning orthogonal partitioning. Liuand Ntafos [89] show how to partition a monotone orthogonal polygon intostar-shaped components. Their algorithm runs in O(nlogn) time, allowsSteiner points, and yields a decomposition within four times optimal. Gun-ther [56] gives a polynomial time algorithm for partitioning an orthogonalpolygon into orthogonal polygons with k or fewer vertices. In most casesthis algorithm �nds a partition that is within a factor of two of optimal.Gy�ori et al [58] also have some results on partitioning orthogonal polygonsinto subpolygons with a �xed number of vertices.0.3.2 Covering Orthogonal PolygonsTools from graph theory are useful when developing algorithms for coveringorthogonal polygons. If each edge of an orthogonal polygon is extended to aline, a rectangular grid results. Based on this grid, a graph can be associatedwith a covering problem as follows. The vertices of the graph are the gridsquares that lie within the polygon and two such vertices are adjacent ifthe associated grid squares can be covered by a subpolygon lying entirelywithin the polygon. Depending upon the type of subpolygon, there can bea correspondence between covering the graph with the minimumnumber ofcliques and the original polygon covering problem. For example in �gure 8,if the grid squares are joined by edges if they lie in the same rectangle, thenthe problem of covering the polygon with rectangles corresponds to coveringthe derived graph with cliques. If such a correspondence exists, then thetractability of both problems depends upon the properties of the derivedgraph. This graph theory approach underlies several of the algorithms weshall encounter in this section. The types of subpolygons that have beenstudied include rectangles, squares, orthogonally convex, orthogonally star-shaped and others.RectanglesThe problem of covering an orthogonal polygon with the minimumnumberof axis aligned rectangles has found application in data compression [90], the



14storing of graphic images [95], and the manufacture of integrated circuits[23, 60].As early as 1979 Masek [95] showed that if the orthogonal polygoncontains holes, then the problem is NP-complete. Later Conn and O'Rourke[31] show that for an orthogonal polygon with holes it is also NP-complete ifonly the boundary or only the reex vertices need to be covered. Attentionthen turned to the case where the polygon does not contain holes.In 1981 Chaiken et al [23] initiated the above mentioned graph theoryapproach. They de�ne a graphG with grid squares for vertices and with twovertices adjacent if there is a rectangle, lying entirely within the polygon,that contains both associated grid squares. They show that the cliques ofthis graph correspond to the rectangles in the polygon whose sides lie ongrid lines. The rectangle cover problem then corresponds to the problemof covering the vertices of the graph with the minimum number of cliques.This clique problem is NP-complete in general but polynomially solvablefor the class of perfect graphs. Unfortunately, the graph derived from therectangle problem is not perfect, even if the polygon does not contain holes[23].In the search for a solvable restriction of the problem attention turnedto restricted types of orthogonal polygons. An orthogonal polygon is calledhorizontally (vertically) convex if its intersection with every horizontal (ver-tical) line is either empty or a single line segment. For an example see �gure9. An orthogonal polygon is called orthogonally convex if it is both hori-zontally and vertically convex. Chaiken et al [23] have an example showingthat even for orthogonally convex polygons the derived graph is not per-fect. Thus for the rectangle covering problem the graph approach has notyielded e�cient algorithms. Note that the intersection graph of the maxi-mal rectangles in an orthogonal polygon without holes is perfect [126].To develop a polynomial time algorithm for the special case of coveringan orthogonally convex polygon with the minimum number of rectangles,in 1981 Chaiken et al [23] use an approach that reduces the problem tothe same problem on a smaller polygon. Later Liou et al [84] develop anO(n) time algorithm for this problem. Brandstadt also contributes a linearalgorithm for the restricted case of 2-staircase polygons [19].In 1984 Franzblau and Kleitman [43] handle the larger class of horizon-tally convex polygons. They give a polynomial time algorithm for coveringthis class with the minimum number of rectangles. See also [57].In 1985 Lubiw [92] was able to provide a polynomial time algorithmfor another restricted class of orthogonal polygons. Her algorithm han-dles orthogonal polygons that do not contain a rectangle that touches theboundary of the polygon only at two opposite corners of the rectangle.In spite of these e�orts on special cases the general problem of cov-



0.3. ORTHOGONAL POLYGONS 15ering an orthogonal polygon without holes with the minimum number ofrectangles remained open for some time. Finally in 1988, Culberson andReckhow [35] settle the issue by showing the problem to be NP-complete.Later Berman and Das Gupta [16] go further and show that no polynomialtime approximation scheme for the problem exists unless P = NP.The di�culty of the problem led Cheng et al [30], in 1984, to develop alinear approximation algorithm that is guaranteed to �nd a solution withinfour times optimal for hole free polygons. Then in 1989 Franzblau developsan O(nlogn) time approximation algorithm that yields a covering contain-ing O(�log�) rectangles, where � is the minimum number of rectanglesrequired for a covering [44]. She also shows that an optimal partitioningcontains at most 2� + H � 1 rectangles, where H is the number of holescontained in the polygon.Recently, Keil [67] introduces a type of rectangle decomposition which isintermediate between partitioning and covering. This non-piercing coveringallows rectangles to overlap, but if two rectangles A and B overlap, theneither A�B or B�A must be connected. Keil provides an O(nlogn+mn)time algorithm for �nding an optimal non-piercing covering of an orthogonalpolygon P without holes, where m is the number of edges in the visibilitygraph of P that are either horizontal, vertical or form the diagonal of anempty rectangle.SquaresCovering polygons with axis aligned squares has application in the con-struction of data structures used in the storage and processing of digitalimages. For example, the digital medial axis transform (MAT) [135] isbased on representing an image by the union of squares. Simple imagesmay be covered by few squares and may be easily reconstructed from theMAT.Scott and Iyengar [124] de�ne the Translation Invariant Data Structure(TID), as a method for representing images. An image is considered to be agrid of "black" and "white" pixels, and the TID for a given image consistsof a list of maximal squares covering all black regions within the image. Inorder to reduce the cost of storing and manipulating a TID, the underlyinglist of squares should be as small as possible. Scott and Iyengar [124] givea heuristic for �nding a small covering set of squares as part of their TIDconstruction algorithm.Albertson and O'Keefe [5] investigate a graph associated with the squarecovering problem. A unit square in the plane whose corners are integerlattice points is called a block. A polygon with integer vertices then containsof set of N blocks. Albertson and O'Keefe de�ne a graph, with the blocks



16as vertices and with such vertices adjacent if the corresponding blocks canbe covered by a square lying entirely within the polygon. They show thatfor polygons without holes this graph is perfect. They further show that theblocks corresponding to a clique in the graph form a set of blocks entirelycontained within a single square lying in the polygon. Aupperle et al [8]investigate this graph further and show that for polygons without holes thegraph is chordal. This allows the use of an algorithm for covering chordalgraphs by cliques to serve as an O(N2:5) time algorithm for the problem ofcovering an orthogonal polygon without holes with the minimum numberof squares. By further exploiting the geometry, Aupperle [7] adapts thisapproach to produce an O(N1:5) time algorithm for this problem. Thefastest algorithm based on the blocks lying in the polygon runs in O(N )time and is due to Moitra [96, 97].The number N of blocks lying in the polygon could be much larger thatn, the number of vertices de�ning the polygon. Even if the block side isoptimized N may be 
(n2). In light of this Bar-Yeuda and Ben-Chanoch[11] consider an alternative approach of covering the polygon one square ata time and achieve an O(n+ �) time algorithm for covering an orthogonalpolygon without holes, where � is the minimumnumber of squares requiredin a cover.If the polygon contains holes the square coverage problem becomes NP-complete [8, 7].Orthogonal Convex and Star-shaped subpolygonsWhen restricting the polygons to be orthogonal we �nd it is natural toalso restrict the notion of visibility. We consider two notions of orthogonalvisibility [33]. Two points of a polygon are said to be r-visible if thereexists a rectangle that contains the two points [66]. Using r-visibility leadsto the fact that an r-convex polygon is just a rectangle. The decompositionof an orthogonal polygon into rectangles has been discussed in previoussubsections. An r-star-shaped polygon, P , is an orthogonal polygon forwhich there exists a point q of P such that for all other points p of P p isr-visible (ie. lies in the same rectangle) to q.Recall that an orthogonally convex polygon is an orthogonal polygonthat is both horizontally and vertically convex. Two points of an orthog-onal polygon are said to be s-visible (staircase visible) if there exists anorthogonally convex subpolygon containing both points. Note that an s-convex polygon is simply an orthogonally convex polygon. An s-starshapedpolygon contains a point q, such that for every point p, in the polygon,there is an orthogonally convex subpolygon containing both p and q.In this subsection we will consider the problems of covering an orthogo-



0.3. ORTHOGONAL POLYGONS 17nal polygon with the minimum number of r-stars, s-stars and orthogonallyconvex polygons.A classi�cation of orthogonal polygons, due to Reckhow and Culberson[118], based on the types of "dents" encountered, has been useful in thework on these problems [34, 33, 99, 98, 115, 117, 118]. If the boundaryof the orthogonal polygon is traversed in the clockwise direction, at eachcorner either a right 90� (outside corner) or a left 90� (inside corner) turnis made. A dent is an edge of P both of whose endpoints are inside corners.If the polygon is aligned so that north (N) corresponds with the positivey axis, then dents can be classi�ed according to compass directions. Forexample, an N dent is traversed from west to east in a clockwise traversalof the polygon. An orthogonal polygon can then be classi�ed according tothe number and the types of dents it contains. A class k orthogonal poly-gon contains dents of k di�erent orientations. Class 0 orthogonal polygonsare the orthogonally convex polygons. A vertically or horizontally convexpolygon (class 2a) is a class 2 orthogonal polygon which has only opposingpairs of dent types (ie N and S or E and W). Class 2b orthogonal polygonshave two dent orientations that are orthogonal to one another (ie. W andN, N and E, E and S, or S and W). For an example of a class 3 polygon see�gure 10.The graph theory approach has been important in the development ofunderstanding of these problems. By extending the dent edges across thepolygon a partition into O(n2) basic regions results. These basic regionscorrespond to vertices in the de�nition of several relevant graphs. Motwaniet al [99, 98] de�ne an s-convex visibility graph, using the basic regions asvertices, where two vertices are adjacent in the graph if the correspondingbasic regions can be covered by a single orthogonally convex subpolygon.They de�ne an r-star (s-star) visibility graph, again using the basic regionsas vertices, where two vertices u and v are adjacent if there is a region wthat is r-visible (s-visible) to the regions corresponding to u and v. Relateddirected graphs were de�ned by Culberson and Reckhow [118, 33, 117, 34].In 1986 Keil [66] provides the �rst algorithm for minimally coveringwith orthogonally convex components. He provides an O(n2) time algo-rithm for covering horizontally convex orthogonal polygons. In 1987, forthis problem, Reckhow and Culberson [118, 34] give an 
(n2) lower boundon actually listing the vertices of all the subpolygons in the output, butprovide an O(n) time algorithm for �nding the minimum number of or-thogonally convex polygons in an optimal cover of a horizontally convexorthogonal polygon. Culberson and Reckhow also provide an O(n2) algo-rithm for minimally covering class 2b type orthogonal polygons, and theygive a complex algorithm for handling a larger class. Later for class 3polygons Reckhow [117] provides an O(n2) time algorithm.



18 For the problem of covering with orthogonally convex components therelevant convex visibility graph is formed by connecting two grid squares ifthey can be covered by a single orthogonally convex subpolygon [98, 115,117, 118]. Motwani et al [98] prove that a minimum clique cover of thisvisibility graph corresponds exactly to a minimumcover of the correspond-ing orthogonal polygon by orthogonal convex polygons. Thus we may solvethe polygon covering problem using existing graph clique cover algorithms.The complexity of the available clique cover algorithms depends upon theproperties of the convex visibility graph. For class 2 polygons, the convexvisibility graph is a permutation graph [98, 115]. For class 3 polygons, thegraph turns out to be weakly triangulated [98, 117]. Although these graphclasses allow polynomial time clique cover algorithms, the known geometricalgorithms are still the most e�cient algorithms to solve the problem ofcovering an orthogonal polygon with the minimumnumber of orthogonallyconvex subpolygons. For class 4 polygons (general orthogonal polygons)the convex visibility graph is not perfect [98, 115] and the complexity ofthe general problem of covering orthogonal polygons with the minimumnumber of orthogonally convex subpolygons remains open.For covering with r-stars, Keil [66] provides an O(n2) time algorithmfor optimally covering a horizontally convex orthogonal polygon. This islater improved to O(n) time in [46]. For general class 2 polygons, class 3polygons and general orthogonal polygons the problem of covering with theminimum number of r-stars remains open.For covering with s-stars, Culberson and Reckhow [33] provide O(n2)time algorithms for optimally covering horizontally convex orthogonal poly-gons and general class 2 polygons. For class 3 and class 4 polygons thedevelopment of algorithms has depended upon properties of the s-star visi-bility graph. Motwani et al [99] show that for class 3 polygons the deriveds-star visibility graph is chordal. They show that a minimum clique coveralgorithm for chordal graphs can be used to s-star cover class 3 polygons inO(n3) time. For class 4 polygons they show that the derived s-star graphis weakly triangulated. This then leads to an O(n8) time algorithm for thegeneral s-star covering problem [99].Other covering subpolygonsThere are some other known results related to the covering of orthogonalpolygons with subpolygons. Bremner and Shermer [20, 21] studied an ex-tension of orthogonal visibility, called O-visibility, in which two points ofthe polygon are O-visible if there is a path between them whose intersectionwith every line in the set O of orientations is either empty of connected. Fororthogonal visibility O = f0�; 90�g. A polygon P is O-convex if every two



0.3. ORTHOGONAL POLYGONS 19points of P are O-visible, and O-star-shaped if there is a point of P fromwhich every other point of P is O-visible. Bremner and Shermer [20, 21]were able to characterize classes of orientations for which minimum coversof a (not necessarily orthogonal) polygon by O-convex or O-star-shapedcomponents could be found in polynomial time.Regular star-shaped (nonorthogonal) polygons have also been studiedas covering subpolygons. Edelsbrunner et al [38] give an O(nlogn) timealgorithm that covers an orthogonal polygon with b r2c+1 star-shaped sub-polygons, where r is the number of reex vertices in the polygon. This isimproved by Sack and Toussaint [122] who give an O(n) time algorithm forcovering an orthogonal polygon with bn4 c star-shaped components. Carlssonet al [22] are able to produce an optimal star-shaped cover for histogramsin linear time.Gewali and Ntafos [47] consider covering with a variation of r-starswhere periscope vision is allowed. They give an O(n3) algorithm for opti-mally covering a restricted type of orthogonal polygon. A di�erent variationof r-stars is considered by Maire [93]. His stars consist of a union of a ver-tical and a horizontal rectangle and look like "plus" signs. He de�nes atype of star graph and shows it is weakly triangulated implying an optimalalgorithm for the covering problem.AcknowledgementThe author wishes to thank the Natural Sciences and Engineering ResearchCouncil of Canada for �nancial support.
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32 BIBLIOGRAPHYFigure 0.1: (a) a star-shaped polygon, (b) a spiral polygon, and (c) apolygon monotone with respect to the y-axis
(a)

(b)

(c)



BIBLIOGRAPHY 33Figure 0.2: A polygon with 9 vertices and 3 reex vertices partitioned intoconvex subpolygons (a) with a Steiner point and (b) without Steiner points
(a)

(b)



34 BIBLIOGRAPHYFigure 0.3: An X- pattern



BIBLIOGRAPHY 35Figure 0.4: A partition into trapezoids



36 BIBLIOGRAPHYFigure 0.5: Horizontal and vertical chords between reex vertices



BIBLIOGRAPHY 37Figure 0.6: A partition using (a) the minimum number of rectangles, and(b) the minimum amount of "ink"
(a)

(b)



38 BIBLIOGRAPHYFigure 0.7: A guillotine partition



BIBLIOGRAPHY 39Figure 0.8: Each grid region can be associated with the vertex of a graph



40 BIBLIOGRAPHYFigure 0.9: A horizontally convex polygon



BIBLIOGRAPHY 41Figure 0.10: A class 3 polygon containing N, W and S dents


